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Lecture #1: Hamiltonians, Density Operators, and Time Evolution  
 
1. NMR Hamiltonians  
1.1 Zeeman interaction  
 The largest interaction in NMR is the Zeeman interaction, which describes the preferential 

alignment of the nuclear magnetic dipolar moment  along the magnetic field :  
 

 
 
All nuclear spins of the same type (γ) experience the same Zeeman interaction, irrespective of the 
electronic environment around each individual spin. Therefore the Zeeman interaction does not contain 
information on chemical structure. But the Zeeman interaction is so much larger than all internal nuclear 
spin interactions that it defines the quantization axis for the local spin interactions.   

1.2.  Chemical shift interaction 
 Nuclear spins also experience smaller interactions in its local environments. The chemical shift 
interaction arises from the shielding of the nuclear spins from the external magnetic field by the 
surrounding electrons.  Because of the electronic shielding, nuclei experience a weaker magnetic field.  
Depending on the bonding, different nuclei have different electron densities around them, thus the 
amount of shielding differs. This gives rise to different NMR frequencies.   
 
 In general, the electron density distribution around a nucleus is not spherical, so chemical shift 
interaction is orientation-dependent (anisotropic), with some direction more shielded than others. In 
isotropic solution, molecules undergo fast tumbling in all directions (isotropic), so the anisotropic 
chemical shift is averaged to the same value, σiso, for all directions.  
 
The chemical shielding Hamiltonian is:  

   

 

 
Truncation of Hamiltonians  
 The chemical shift interaction is much weaker than the Zeeman interaction, i.e. . Under 

this condition, time-independent perturbation theory indicates that  is truncated by the large 
Zeeman interaction to give only spin operators that commute with . This means only spin operators 
that commute with  survive in the chemical shift interaction. These commuting terms include 1, ,

, and their products.  
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Ĥ0
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Truncation simplifies the full chemical shift Hamiltonian  to:  

 
 

 
Combining Zeeman interaction with the chemical shift interaction, we obtain  
 

 

 
So the observed precession frequency is: .  

 

1.3.  Dipolar interaction 

General form:    

 
The scalar products lead to a lengthier expression:  
 

 

This Hamiltonian contains two-spin operators such as  etc, with their 
corresponding trigonometric terms.  
 
To proceed further, we distinguish between heteronuclear and homonuclear dipolar coupling.  
 
Heteronuclear I-S dipolar coupling:   
 
Two spins with different gyromagnetic ratios have large sum and difference chemical shifts:  
 

 

 
Here both . So truncation will retain only with  components that commute with 
both  and .  

 It can be shown that the term  +  in the dipolar Hamiltonian does not commute with 

the difference chemical shift . Only the  term in the dipolar Hamiltonian remains after 
truncation:  
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ω =ω0 1−σ zz
LF( )
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k Îy
k Îz
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j Îy
k ,   Îz
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Note that the exact calculation of the truncated Hamiltonian cannot be made based on the above 
argument, because while  and  do not commute with , combinations of  and 

 can commute (see DQ and ZQ coherences later).  
 
Homonuclear I-J dipolar coupling 
For  and , we can neglect the chemical shift difference term and 
approximate the total CS Hamiltonian as  
 

 

 
So only the sum chemical shift can truncate the dipolar Hamiltonian. The result of this truncation is:  
 

 

 

1.4.  Quadrupolar interaction 
 Spin-1/2 nuclei only have magnetic dipole moments. Higher multipole moments, both magnetic 
and electric, vanish, which can be proved using the Wigner-Eckert theorem.  
 
 Nuclei with spin quantum numbers I ≥1 have an electric quadrupole moment Q, which, when 
subject to an electric field gradient V, produces an interaction that is magnetic in nature. So the size 
of the quadrupolar interaction depends both on the size of nuclear Q and the size of the electric field 
gradient created by the electrons at the site of the nucleus.  
 
 Metal nuclei tend to have large quadrupole moments but small EFGs due to the symmetric 
ionic environments, so their quadrupolar interaction is weak. In comparison, non-metal nuclei such as 
14N have small quadrupole moments Q but large EFGs due to the asymmetric covalent bonding (except 
for cases such as NH4

+).  
 
The EFG tensor is defined as:  

  , where f is the electric potential.  

 
The EFG tensor is symmetric and traceless ( ). We can define an asymmetry 

parameter  just like the chemical shift asymmetry parameter. Then, the principal values 

of the EFG tensor can be re-written in terms of :  
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The full quadrupolar interaction H is:   

 
Similar to chemical shift, when the quadrupole interaction is much smaller than the Zeeman 
interaction, the latter truncates the quadrupolar interaction to first order. But the size of the quadrupolar 
interaction is often larger than chemical shielding, so second-order terms are often included.  
 

 
 
(Note the conventional quadrupole interaction order starts with 1, while the other spin-1/2 interactions 
normally start with 0 for their truncated forms.) 
 
The first-order quadrupolar interaction is:  

 

 

where .  

 
The 2nd order quadrupolar interaction is scaled down from the 1st order term by the Larmor frequency:  

 

 
So the higher the magnetic field, the smaller the second-order quadrupolar coupling.  
 
 
2. Spin Density Operators  
We can use the vector model and classical mechanics to explain:  

• Larmor precession  
• effects of single-spin interactions such as chemical shifts on magnetization  
• effects of rf pulses on single-spin magnetization 

 
However, we cannot use the vector model to explain:  

• the effect of two-spin interactions on the magnetization,  
• evolution of coupled spin states 

We need to use the density operator/matrix formalism for this purpose. Density operator r combines the 
quantum mechanics of a single spin with the statistical mechanics of an ensemble of spins.  
 
2.1 Density operator defined  
 Most samples contain a statistical mixture of spins with different polarization states. The 
magnetization is the sum of the individual magnetic dipole moments. A single spin-1/2 in a 
superposition state of spin up and spin down can be expressed as:  
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2( ) + ...

 
ĤQ

1( ) = 1
2

eQ
2I 2I −1( )! ⋅Vzz

LF 3Î z
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        with basis states of  

 
The expectation value of an operator is defined based on this pure state as:  
 

 

 
The products of coefficients such as  correspond to the elements of a density operator :  

 

 
The density operator is Hermitian, i.e. .  The expectation value of any operator can then be 
written as the trace of the product between the density operator and the observable:  
 

 
 
For ensembles of spins with states  with different coefficients :  

 

 
Density operator is a very useful construct because a mixture of spin system cannot be easily described 
as state vectors (coefficients are all different).  
 
The expectation value of a physical observable for a QM system that is a mixture can still be calculated 
using the same formal equation, but with the density operator defined with the ensemble average bar:   
 

 
 
Once the spin density operator of the ensemble is known, one can predict the measurement result 
(expectation value) of any physical observable, independent of the individual spin states.  
 
2.2 Populations and coherences  
 The diagonal elements of the density operator are populations, since  gives the 
ensemble-averaged probability of finding the system in state a.  
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 The off-diagonal elements of the density matrix are coherences between spin eigenstates. 
Coherences are complex, and the two elements are complex conjugate of each other:  

 ,   i.e.   

 The presence of non-zero coherence terms means there is transverse magnetization; moreover, 
the polarization vectors of individual spins’ transverse dipole moment cannot all point to the same 
direction.  
 
2.3 Density operator at thermal equilibrium  
 At thermal equilibrium, the coherences are 0 and the populations obey the Boltzmann 
distribution. So the diagonal elements of the density matrix are:  
 

. 

 
For most NMR experiments, . Therefore,  
 

In operator terms:      

The exponential operator can be Taylor-expanded as .  

For typical magnetic field strengths of several Tesla,  is very small compared to thermal 
energy:  
 

. 

 
As long as T >> 1K, the above equation holds true, since the Boltzmann factor is only 10-5 to 10-3. So we 
can safely consider only the first two terms of the Taylor series:  
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The unit operator is unaffected by any Hamiltonian, so we can focus on the reduced density operator:  
 

 

 
2.4 NMR observables  
 
In NMR, the only observables are single-quantum magnetization components:  
 

 

 
This means that for there to be detectable magnetization, the density operator itself must contain terms 
such as , so that the expectation values do not vanish. If , then 
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We can thus interpret  as detectable magnetization along the i axis, without explicitly calculating 
expectation values every time. All NMR experiments produce final density operators of this form, whose 
associated frequencies encode structural and dynamical information.  
 
2.5 Time evolution of the density operator under a Hamiltonian  
The Schrodinger equation describes how a state evolves under an H:  
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Multiplying the equivalent bra equation to both sides, we obtain the corresponding equation of motion 
for the density operator:  
 

 

 
Note: Proof of von Neumann equation from the Schrödinger equation:  
 

   

  
 

 
This von Neumann equation expresses time dependence in terms of an operator instead of states, and 
is a manifestation of the Heisenberg picture of quantum mechanics.  
 
If the Hamiltonian and the density operator commute, i.e. , then r does not change with 

time. For example, when the magnetization is along the z direction, , then it does not evolve 
under the chemical shift interaction nor the dipolar interaction.  
 
For time-independent Hamiltonians, the formal solution of the von Neumann equation is:  
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As before, the exponential operator can be Taylor-expanded as:  
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Ĥ , ρ̂ t( )⎡⎣ ⎤⎦= 0

ρ = Iz

ρ t( ) = e−iHtρ 0( )eiHt

U t( ) ≡ e−iHt

ρ t( ) =U t( )ρ 0( )U−1 t( )
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If , then the series converges as  
 
Under this condition,  

  

 

  

Where w is the proportionality constant in .  
 
Note that the coefficients in front of the sine function are such that the imaginary i will disappear, 
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3. Application of the von Neumann equation to simple NMR experiments 
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. The formal solution of r(t) is . More usefully,  
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Initially, we apply a 90˚ pulse on the S channel: , where a and b differ due to the 
Boltzmann factor for spins with different gyromagnetic ratios  
 
The truncated heteronuclear dipolar Hamiltonian is  
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⎤

⎦
⎥
⎥
= 1
2
Tr 0 0

0 eiω0t
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=
1
2
eiω0t
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So the detected signal is  for . Detection is 

equivalent to picking out the spatial part of the density operator. The factor of ½ comes from the spin-
1/2 of the operator.  
 
 
3.4 Hahn Echo  
 
I spin:  90˚x – t – 180˚y – t  - detect  
 

 

 
If we change the 180˚ pulse phase to x: 90˚x – t – 180˚x – t  - detect  
 

 

 
The direction of the M is inverted. This is the basis of the exorcycle phase cycling that we discussed 
before.  
 
-------------------------------------- Matrix algebra review  ----------------------------------------------   
Commuting operators  
In general, operator products depend on the direction of multiplication. This property differs from 
products of scalar quantities.  

The commutator between two operators is defined as:  

 

Two operators  and  commute if and only if , i.e. .  

 

Two operators do not commute if .  

 
Pauli matrices  
 For spin-1/2, three Pauli matrices, corresponding to the three orthogonal directions of the spin 
operator, can be defined:  
 

, 
 

 

f t( ) = 1
2
cosω0t + isinω0t( ) ρ t( ) = Ix cosω0t + Iy sinω0t

 

ρ 0( )∝ Iz
90˚ Ix⎯ →⎯⎯ Iy

H=ω I Iz ,t⎯ →⎯⎯⎯⎯ Iy cosω I t − Ix sinω I t
180˚ Iy⎯ →⎯⎯⎯ Iy cosω I t + Ix sinω I t

H=ω I Iz ,t⎯ →⎯⎯⎯⎯ Iy cos
2ω I t − Ix cosω I t sinω I t + Ix sinω I t cosω I t + Iy sin

2ω I t

= Iy

 

Iy cosω I t − Ix sinω I t
180˚ Ix⎯ →⎯⎯⎯ −Iy cosω I t − Ix sinω I t

H=ω I Iz , t⎯ →⎯⎯⎯⎯ −Iy cos
2ω I t + Ix cosω I t sinω I t − Ix sinω I t cosω I t − Iy sin

2ω I t = −Iy

Â, B̂⎡⎣ ⎤⎦≡ ÂB̂− B̂Â

Â B̂ Â, B̂⎡⎣ ⎤⎦= 0 ÂB̂ = B̂Â

Â, B̂⎡⎣ ⎤⎦≠ 0

 
Î x =

1
2

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
,  Î y =

1
2

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟
,  Îz =

1
2

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

Î x
2 = Î y

2 = Îz
2 = 1

4
1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟=
1
4
1̂
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Two-spin operators  
 Products of two spin operators are tensor products that increase the dimensionality of the 
matrices from 2 to 4 for two spin-1/2 systems.  

e.g.   

  

  

 
These matrices allow us to calculate the commutator of two-spin product operators.  
 

e.g.  

 

 

So  

 
What about the commutator between  and the sum spin operator, ? The latter is important 

because the combined chemical shift and Zeeman interaction of two spins is .  
 

 
Î x , Î y⎡⎣ ⎤⎦ = iÎz ,  Î y, Îz⎡⎣ ⎤⎦ = iÎx ,  Îz , Î x⎡⎣ ⎤⎦ = iÎy

Î x Îy =
1
4

0 1
1 0

⎛

⎝
⎜

⎞

⎠
⎟⊗ 0 −i

i 0

⎛

⎝
⎜

⎞

⎠
⎟=
1
4

0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Î x Îx =
1
4

0 1
1 0

⎛

⎝
⎜

⎞

⎠
⎟⊗ 0 1

1 0

⎛

⎝
⎜

⎞

⎠
⎟=
1
4

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Îz Îz =
1
4

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟⊗ 1 0

0 −1

⎛

⎝
⎜

⎞

⎠
⎟=
1
4

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 
Î xŜx ,   ÎzŜz⎡⎣ ⎤⎦= ?

Î x ÎxŜzŜz − ŜzŜz Îx Îx ∝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
−

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
−

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= 0

 
Î xŜx ,   ÎzŜz⎡⎣ ⎤⎦= 0

Î xŜx Îz + Ŝz
Îz + Ŝz
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So,  

 
We can summarize the following two-spin operators:  

 

 
Other notable matrices are:  

,  

 
In general, a single product operator of two spins with double-transverse components does not 
commute with . However, combinations of two product operators can commute. The 
commutation of two-spin product operators can be cast in the fictitious spin-1/2 framework to facilitate 
the calculation of the time evolution of coherences under double-quantum and zero-quantum 
Hamiltonians.  
 
  

Îz + Ŝz = Îz ⊗1+1⊗ Ŝz =
1
2

1 0
0 −1

⎛

⎝
⎜

⎞

⎠
⎟⊗ 1 0

0 1

⎛

⎝
⎜

⎞

⎠
⎟+
1
2

1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟⊗ 1 0

0 −1

⎛

⎝
⎜

⎞

⎠
⎟

= 1
2

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
+ 1
2

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
=

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

Î xŜx ,   Îz + Ŝz⎡⎣ ⎤⎦ =
1
4

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

− 1
4

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

0 0 0 −1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

≠ 0

 

Î xŜx =
1
4

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
,   Î yŜy =

1
4

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
,   ÎzŜz =

1
4

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Îz + Ŝz =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
Î ⋅ Ŝ = 1

4

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Îz + Ŝz
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Lectures #2: Average Hamiltonian Theory 
 
Average Hamiltonian theory (AHT), developed by Waugh and Haeberlen in 1968, is a mathematical 
formalism for analyzing how pulse sequences affect internal spin interactions. AHT is particularly 
useful in the derivation and analysis of pulse sequences that consist of a block of rf pulses repeated 
many times. This is the situation that arises in many homonuclear decoupling and dipolar recoupling 
experiments.  
 
AHT depends on changing the picture in which we view the evolution of the spin system from the 
usual rotating frame of the Zeeman interaction to a new frame of reference in which the rf pulses no 
longer appear directly. Instead, the rf pulses cause additional time dependences in the local fields (HD, 
HCSA, and HCS). This new frame is called the interaction representation of the rf Hamiltonian.  
 
1. Interaction frame  
 
1.1  Interaction frame of the Zeeman interaction: the rotating frame  
 
We have already discussed an interaction frame extensively before: the rotating frame is the interaction 
frame of the Zeeman interaction.  
 
Larmor precession in the laboratory frame is mathematically represented as:  
 

  (1) 
 
The transition to a frame rotating at , where the magnetization appears static, is equivalent to 
a sign-reversed exponential operator rotation:  
 

   (2) 
 
Eq. 2 differs from Eq. 1 in that the central operator is r(t) rather than r(0), and the sign of the 
exponential operator is opposite.  
 
Eq. 2 describes the density operator in the interaction frame of the Zeeman Hamiltonian.  
 
Combining Eq. 1 and 2, we find the time evolution of the rotating-frame density operator as:  
 

   (3) 
 
This shows that the offset  governs the evolution of M in the rotating frame.  
 
1.2 General definition of the interaction representation and truncation  
 In general, for a Hamiltonian consisting of a large H0 and a small H1, , H1 can be 
transformed into the interaction frame of H0 according to  
 

ρ t( ) = e−iH0tρ 0( )e+iH0t = e−iω0Iztρ 0( )eiω0Izt

ωR =ω0

ρR t( ) = eiωRIzt ⋅ ρ t( ) ⋅ e−iωRIzt

ρR t( ) = ei ωR−ω0( )Izt ⋅ ρ 0( ) ⋅ e−i ωR−ω0( )Izt

ω0 −ωR

H = H0 +H1
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   (4) 
 
The density operator is transformed into the interaction frame of H0 as:  
 

  (5) 
 
In this H0 interaction frame, the equation of motion is similar to the von Neumann eqn: 
 

  (6) 

 
The components of H1 that do not commute with H0 appear as time-dependent, . If H0 >> H1, 
then the time oscillations due to H0 are much faster than the time dependence of H1 itself. Then, the 
effects of these non-commuting terms are averaged to 0. The time-averaged H1 in the interaction 
representation is therefore:   
 

 ,  (7) 
 
which is again time independent.  
 
Eq. (7) is the definition of truncation of H1 by H0. The time averaging retains only parts of H1 that 
commute with H0. (We will see below that truncation is basically first-order average Hamiltonian 
theory).  

 In the interaction representation, the density operator evolves under  according to:  
 

 ,  (8) 
 
Eventually, we want to know the density operator in the laboratory frame.  Since  
 
  , ,  (9) 
 
we find:  

  (10) 

 
Back in the laboratory frame, we know that the normal solution to the von Neumann equation is:  
 

 ,  (11) 
 

 H
!1 t( ) ≡ eiH0tH1e−iH0t

 ρ
! t( ) ≡ eiH0tρ t( )e−iH0t

  
d !ρ
dt

= −i !H1,  !ρ⎡⎣ ⎤⎦

 
!H1 t( )

!H1
(0)

= eiH0tH1e
−iH0t

 !H1
0

 ρ
! t( ) = e−i "H1

0
t ρ! 0( )ei "H1

0
t

 ρ
! t( ) = eiH0tρ t( )e−iH0t  ρ t( ) = e−iH0t ρ! t( )eiH0t

 
ρ t( ) = e−iH0t e−i !H1

0
t ρ" 0( )ei !H1

0
t⎡

⎣⎢
⎤
⎦⎥
eiH0t = e

−i H0+ !H1
0⎛

⎝
⎞
⎠ tρ 0( )e

i H0+ !H1
0⎛

⎝
⎞
⎠ t

ρ t( ) = e−i H0+H1( )tρ 0( )ei H0+H1( )t
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Comparing Eq. 10 and 11, we see that the transformation to the interaction frame amounts to replacing 
H1 by its first-order time average:  

 . (12) 
 
1.3 Interaction frame of the rf Hamiltonian Hrf  
 The interaction frame is a very useful tool for calculating the effective local fields under rf 
pulses. When these rf pulses are stronger than the local spin Hamiltonians, , we can 
transform the local spin Hamiltonians into the interaction frame of the rf pulses.  
 
 For a Hamiltonian consisting of a  which is larger than H1, , 
H1 is transformed into the interaction frame of  according to  
 

  (13) 
 
The effect of the pulses is to rotate the nuclear spin interaction, similar to the von Neumann equation 
for density operators, except for a sign change of the exponent.  

 We can designate the propagator of the rf pulse as . In the literature, this is more 
commonly written as the evolution operator . Then eq. 13 can be rewritten as  
 
   (14) 
 
We are interested in the average H1 in the interaction representation of the rf pulses (cf eq 7):   
 

 ,  (15) 

 
This averaging requires that the rf pulse sequence is periodic over a cycle time tc.  
 
For multi-pulse sequences, we can determine the interaction-frame spin Hamiltonians visually by 
toggling the frame of the internal Hamiltonians (see KSR/Spiess Chapter 3):  
 

1) Flip the interaction frame with the pulses in the rotating frame (left hand rule) around the axis 
of the pulse,  

2) the axis of the interaction representation coordinate system that is parallel to the z-axis of the 
rotating frame is the direction of .  

3) Sum all the  directions for all periods to obtain the average Hamiltonian.  
 
The density operator is similarly transformed into the interaction frame of :  

  (16) 
 
In this interaction frame, the equation of motion is  

 e
−i H0+H1( )t ≈ e

−i H0+ !H1
0⎛

⎝
⎞
⎠ t

ω1 >>ωI ,IS,II

Hrf =ω1Iα = −γB1Iα H = Hrf +H1
Hrf

 H1
! t( ) = eiHrf tH1e

−iHrf t

P ≡ e−iHrf t

Urf

  H1
! t( ) = P−1 ⋅H1 ⋅P  or  = Urf

−1 ⋅H1 ⋅Urf

 
H1!

0( )
= 1
tc

eiHrf tH1e
−iHrf t dt

0

tc

∫

 H1
!

 H1
!

Hrf

 ρ
! t( ) = eiHrf tρ t( )e−iHrf t =Urf

−1 ⋅ ρ t( ) ⋅Urf
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  (17) 

 
which allows us to calculate r(t) in the interaction frame just like in the lab frame. But similar to our 
truncation description, one cannot “go into” the interaction frame without knowing how to “come 
back” to the lab frame. We must write down the entire density operator equality as:  
 

  (18a) 

  (18b)  

 
Here T is the Dyson time-ordering operator, and  
 
  (19) 
 
Using the equality , Eq. 18b can be proved as:  

  (20) 

 

For cyclic sequences, . Therefore, for calculating the average Hamiltonian over 
the cycle time, the rf term can be removed from Eq. 18.  
 
We replace the time integral of  by an effective Hamiltonian  
 

  (21) 

 
where  is equal to an infinite series called the Magnus expansion:  
 

 (22) 

    the 1st-order term is the simple average in Eq. 7 and Eq. 15 

 

  
dρ!

dt
= −i H1",  ρ!

⎡
⎣⎢

⎤
⎦⎥

ρ t( ) =U ⋅ ρ 0( ) ⋅U−1 = Te
−i dt ' H1+Hrf( )

0

t

∫ ⋅ ρ 0( ) ⋅Tei dt ' H1+Hrf( )
0

t

∫

  

= Te−iHrf t

Urf t( )
!"#Te

−i dt 'H$1
0

t

∫
U$ t( )

! "% #% ⋅ ρ 0( ) ⋅Tei dt 'H$1
0

t

∫ TeiHrf t

U−1
rf t( )
& =Urf  U$1 ⋅ ρ 0( ) ⋅U$1−1 Urf

−1

  H
!1 =Urf

−1 H1 Urf = e
iHrf t  H1 e

−iHrf t

eAeBeC = exp eA ⋅B ⋅eC( )

  

ρ t( ) =U1Urf ⋅ ρ 0( ) ⋅Urf
−1U−1 =Urf Urf

−1U1Urf! "# $#
⋅ ρ 0( ) ⋅  Urf

−1U−1Urf! "# $#
Urf

−1

=Urf e
−i dt 'H%1

0

t

∫ ⋅ ρ 0( ) ⋅ei dt 'H%1
0

t

∫ Urf
−1

Urf tc( ) ≡Te−iHrf t =1

 H!1  H!1

  

ρ t( ) =Urf  Te
−i dt 'H!1

0

t
∫ ⋅ ρ 0( ) ⋅Tei dt 'H!1

0

t
∫  Urf

−1

       =Urf  e−iH1
"tc ⋅ ρ 0( ) ⋅eiH1"tc  Urf

−1

 H!1

 H1
! = H1!

0( )
+ H1!

1( )
+ H1!

2( )
+ ...

 
= 1
tc

dt1H!10

tc∫

 

+ 1
2itc

dt10

tc∫ H1! t1( ),H1! t2( )⎡⎣ ⎤⎦dt20

t1∫
− 1
6tc

dt10

tc∫ dt20

t1∫ H1! t1( ), H1! t2( ),H1! t3( )⎡⎣ ⎤⎦⎡
⎣

⎤
⎦ + H1! t3( ), H1! t2( ),H1! t1( )⎡⎣ ⎤⎦⎡

⎣
⎤
⎦{ }dt30

t2∫
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 The higher-order terms in the effective Hamiltonian are relevant when the time tau between 
pulses are not negligible compared to the inverse of the interaction strength. These higher-order terms 
are the reasons for the different performances of various multiple-pulse decoupling and dipolar 
recoupling sequences.  
 
The sign of rotation in the AHT and interaction representation 
The exponential operators in the time evolution of the density operator  

 
  

 
have the opposite sign from the sign in the interaction transformation  

 

. 
 
 This means that the rotation happens with the opposite sign from the r evolution, and the order 
of the pulses in a sequence is multiplied onto H1 in a reversed fashion.  
 
Summary of the AHT  
When  

1) the rf pulse sequence and the internal spin interactions are periodic over a cycle time tc, and  
2) the net rotation produced by the rf block is zero, ,  

 
then we can apply the AHT to convert the problem of finding the propagator U(t) for the entire 

sequence to the problem of finding the interaction-frame propagator , where the rf 
pulses have been transformed away.  
 
Once we can calculate the effective Hamiltonian , which is usually done at the first-order term, 

, then we can calculate the time evolution of the density operator.  
 
 
2. Using AHT to analyze simple NMR experiments  
 
2.1 Chemical shift interaction under a spin lock pulse along x 
 

 
 
Transform into the interaction frame of the rf pulse: 
 

. 
 
So the average CS interaction is:  

ρ t( ) = e−iHtρ 0( )eiHt =Uρ 0( )U−1

H!1 = e
iHrf tH1e

−iHrf t =Urf
−1H1Urf

Urf tc( ) ≡ Te−iHrf t = 1

 
!U tc( ) = e−iH1"tc

 H1
!

 H1
! 0( )

 Hcs =ωcsIz ,     Hrf =ω1Ix

Hcs
! t( ) = eiω1IxtωcsIze

−iω1Ixt =ωcs Iz cosω1t + Iy sinω1t( )
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When ,  .  

When ,  .  
 
You can show the same result by sketching the direction of the interaction-frame Hamiltonian as 
toggled by the rf pulses.  
 
 
2.2 Heteronuclear decoupling by continuous irradiation  
 

The heteronuclear dipolar coupling is . We consider the effect of continuous rf 
pulse  on the I channel on the S-spin signals.  Since the continuous I-pulse affects only the 
I-spin operator, we obtain:  
 

. 

 
Thus heteronuclear coupling is removed by continuous rotation of the I-spin operator by the pulses.  
 
 
2.3 Homonuclear dipolar interaction under spin lock  
 
Here we apply a continuous irradiation along the same direction as the magnetization after an initial 
90˚ pulse. For example, 90˚-y – spin lock x.  
 
The homonuclear interaction is . We can use the notation , to indicate that 
the spin operator direction is along z.  
 

 

 
So the average homonuclear dipolar Hamiltonian is half the size of the lab-frame homonuclear 
coupling and opposite in sign.  
 

 
Hcs
! = 1

t p
ωcs Iz cosω1t + Iy sinω1t( )dt0

t p∫ = ωcs
ω1t p

Iz sinω1t − Iy cosω1t( ) 0
t p

t p =
2π
ω1  Hcs

! = 0

t p →∞  Hcs
!→ 0

HIS =ωd IzSz
Hrf =ω1Ix

 
HIS
! = 1

t p
ωd Iz cosω1t + Iy sinω1t( )Sz dt0

t p∫ = ωd
ω1t p

Sz Iz sinω1t − Iy cosω1t( ) 0
t p = 0

HII =ωd 3IzJz − I ⋅ J( ) Hzz

 

HII
! = ωd

t p
3 Iz cosω1t + Iy sinω1t( ) Jz cosω1t + Jy sinω1t( )− I ⋅ J⎡
⎣

⎤
⎦dt0

t p∫
= ωd
t p

3 IzJz cos
2ω1t + IyJy sin

2ω1t + IzJy + IyJz( )cosω1t sinω1t( )− I ⋅ J⎡
⎣

⎤
⎦dt0

t p∫
= ωd
t p

3
2
IzJz + IyJy( )− I ⋅ J⎡

⎣⎢
⎤
⎦⎥
dt

0

t p∫ =ωd
3
2
I ⋅ J − IxJx( )− I ⋅ J⎡

⎣⎢
⎤
⎦⎥

= −ωd
1
2
3IxJx − I ⋅ J( ) = − 1

2
Hxx
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Magic zero:     
 
Since after the 90˚ pulse the magnetization is along x, , the magnetization does not evolve 
under the effective homonuclear coupling  (they commute).  
 
 
2.4 Cross polarization: heteronuclear dipolar interaction under double spin lock 
 
The condition of CP is that  (Hartman-Hahn matching).  
 

 

 
When the Hartman-Hahn matching condition is satisfied, the interaction frames of the I and S spins 
precess synchronously, giving a non-zero heteronuclear dipolar Hamiltonian.  
 
The important thing now is to analyze the density operator evolution.  
 

. We want to write this in a more meaningful way to facilitate calculation.  

.  

 
 

 
Double commutator:  

 

 
So the difference part of the initial density operator will evolve under the average Hamiltonian,  

.  
 
Combining with the sum part, we obtain:  
 

3IxJx − I ⋅ J( ) + 3IyJy − I ⋅ J( ) + 3IzJz − I ⋅ J( ) = 0

ρ 0( ) = Ix
Hxx

ω1,I =ω1,S

 

!HIS =
2ωd
t p

Iz cosω1,I t + Iy sinω1,I t( ) Sz cosω1,St + Sy sinω1,ISt( )⎡
⎣

⎤
⎦dt0

t p∫

=
ω1,I =ω1,S" 2ωd

t p
IzSz cos

2ω1t + IySy sin
2ω1t + IzSy + IySz( )cosω1t sinω1t( )⎡

⎣
⎤
⎦dt0

t p∫
= 2ωd

t p

1
2
IzSz + IySy( )t p =ωd IzSz + IySy( )

ρ 0( ) = Ix
ρ 0( ) = 1

2
Ix +Sx( )+ 1

2
Ix −Sx( ) = ρΣ 0( )+ ρΔ 0( )

  
!HIS ,ρ 0( )⎡

⎣
⎤
⎦ =ωd IzSz + IySy,  Ix⎡⎣ ⎤⎦ =ωdi IySz − IzSy( )

  

!HIS , !HIS ,ρ 0( )⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦ =ωd

2i IzSz + IySy,  IySz − IzSy⎡⎣ ⎤⎦ =ωd
2i −iIx

1
4
+ 1
4
iSx +

1
4
iSx − iIx

1
4

⎛
⎝⎜

⎞
⎠⎟

= 1
2
ωd
2 Ix − Sx( )∝ρΔ 0( )

ρΔ t( ) = ρΔ 0( )cosωdt + IySz − IzSy( )cosωdt
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.  

 
How does CP enhance sensitivity?  

Because the initial density operator has the Boltzmann factor of the I spin, . This factor 

is now transferred to the S spin, .  

 
It turns out that difference operators such as are in the zero-quantum space, while sum 
operators such as  live in the double-quantum space. The CP average Hamiltonian, 

, also belongs to the zero-quantum space, hence the evolution of the difference density 
operator under the CP Hamiltonian. In general, spin operators in the double-quantum space always 
commute with spin operators in the zero-quantum space, which means there is no evolution.  
 
Bottom line: CP is a zero-quantum (ZQ) process.  
 
The ZQ and DQ operators are defined as linear superpositions of the ladder operators. Zero quantum 
means one spin up and the other spin down, or double-quantum means both spins up or down together. 
The commutation properties of these two-spin operators can be more easily remembered, by defining 
fictitious spin-1/2 operators as the following:  
 
 
4.5 Fictitious spin-1/2 operators 
 
Zero-quantum space:  

,  ,   

 
Double-quantum space:  

,  ,   

 
In the literature, these fictitious spin operators are sometimes denoted as , or , etc. 
It is usually clear from the context which space we are in.  
 
The fictitious spin-1/2 operators follow the same formal commutation properties as single-spin 
operators, i.e.  
 

 and their cyclic permutations 

 and their cyclic permutations 

 

ρ t( ) = 1
2
Ix +Sx( )+ 1

2
Ix −Sx( )cosωdt + IySz − IzSy( )cosωdt

= 1
2
Ix 1+ cosωdt( )+ 1

2
Sx 1− cosωdt( )+ IySz − IzSy( )cosωdt

invisible
! "### $###

ρ 0( ) = γ I B0
kT

Ix

ρ t( ) = ...+ γ I B0
kT

Sx 1− cosωdt( )...

Ix −Sx
Ix +Sx( )

IzSz + IySy

Ix
23( ) ≡ 1

2
I+S− + I−S+( ) = IxSx + IySy Iy

23( ) ≡ 1
2i

I+S− − I−S+( ) = IySx − IxSy Iz
23( ) ≡ 1

2
Iz − Sz( )

Ix
14( ) ≡ 1

2
I+S+ + I+S+( ) = IxSx − IySy Iy

14( ) ≡ 1
2i

I+S+ − I−S−( ) = IySx + IxSy Iz
14( ) ≡ 1

2
Iz + Sz( )

 Ix
0( ),  Ix

ZQ
 Ix
2( ),  Ix

DQ

Ix
23( ), Iy

23( )⎡
⎣

⎤
⎦ = iIz

23( )

Iy
14( ), Iz

14( )⎡
⎣

⎤
⎦ = iIx

14( )
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Importantly, operators in different spaces always commute: 
 

, etc.  

 
  

Ix
0( ), Iy

2( )⎡
⎣⎢

⎤
⎦⎥= 0
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Lectures #3: Understanding Dipolar Decoupling and Recoupling 

 
1. Homonuclear Decoupling  
The average Hamiltonian theory was developed initially to understand multiple pulse decoupling 
sequences. Here rf pulses intersperse with free evolution periods, and one would like to decouple 
homonuclear dipolar couplings while retaining chemical shift interaction.  
 
1.1 The WAHUHA-4 sequence:  

 

 

 
 
We assume very short (and very hard) pulses and short delays tau. If the pulse length is not negligible 
(finite pulse length), then the central window with two tau periods should be 2 x tau + t90˚.  
 
The density operator at the end of one cycle of this pulse sequence is:  
 

 
 
where the propagator U is:  
 

 
 
Here the free evolution operator  is:  

, 
 
and the rf pulse propagator is:  

.  
 
Since  , we obtain     
 

For 90˚ pulses, using the sign convention that  

We obtain      .  
 
A pulse of flip angle f rotates the Z Hamiltonian to a different direction based on the left hand rule. 
This principle is based on the following equation:  
 

 
τ − 90˚−x−τ − 90˚y−τ −τ − 90˚−y−τ − 90˚x−τ  ⎡⎣ ⎤⎦n

ρ t0 +6τ( ) =U 6τ( )ρ t0( )U−1 6τ( )

  U 6τ( ) = Lz  Px  Lz  P−y  LzLz  Py  Lz  P−x  Lz
! """"""""""""""""""""""""""""""""""

Lz

Lz = e
−iHt = e−i HCS+HIS,z+HII ,z( )t

Pα ≡ e−iHrf ,α t

Hrf ,α = −γ B1Iα  Pα = eiγ B1tIα      = e−iω1tIα

γ B1t = −ω1t =
π
2

Pα = ei
π
2 Iα
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Therefore, rotation of an exponential operator is the same as the exponential of the rotation of the 
operator itself.  
 
Applying the above equation, for example, we obtain:  

 

 
This means that the pulses act on the free-evolution-period’s local Hamiltonian the same way that the 
pulses act on the spin density operators, except for a sign reversal.  
 
With this principle, we can simplify the propagator U(6t) by inserting unit operators  to 
rotate the free-evolution operators. Doing this several times eventually shift all the pulse propagators 
together, separate from the free-evolution operators.  
 
   

   

 
With the 4 pulse propagators together, and with the phases of the 4 pulses canceling each other, the 
combined effect of the 4 pulses is null:  
 

 

 
So WAHUHA-4 is a cyclic sequence.  
 
Then  

 
 
In the limit of short τ (compared to the inverse of the coupling), we can Taylor-expand the 
exponentials and obtain  
 

 
 
where     

eiφIα e−iHzte−iφIα = exp eiφIα ⋅ −iHzt( ) ⋅e−iφIα( )

PxLzPx
−1 = ei

π
2 Ix e−iHzτ e−i

π
2 Ix = exp ei

π
2 Ix ⋅ −iHzτ( ) ⋅ e−i

π
2 Ix⎛

⎝
⎜ ⎞

⎠
⎟= exp −iHyτ( ) = Ly

1= Pα
−1Pα

  U 6τ( ) = Lz  Px  Lz  P−y  LzLz  Py  Lz  P−x  Lz
! """"""""""""""""""""""""""""""""""

 

= Lz  Px  Lz Px
−1Px( )P−y  LzLz P−y

−1P−y( )  Py  Lz Py
−1Py( )  P−x  Lz P−x

−1P−x( )
= LzLy  Px  LxLx  P−y  L−x  Py  L−y  P−x
= LzLyLxLx  PxP−y  L−x P−y

−1P−y( )L−y  PyP−x
= LzLyLxLx  Px  LzL−y  P−yPyP−x = LzLyLxLx  Px  Lz Px

−1Px( )L−yP−yPyP−x
= LzLyLxLxLy  Px  L−y  P−yPyP−x = LzLyLxLxLy  Px  L−y Px

−1Px( )P−yPyP−x
= LzLyLxLxLyLz   PxP−yPyP−x

 
PxP−yPyP−x = e

i π2 Ix ei
π
2 I−yei

π
2 Iy

1
! "# $# ei

π
2 I−x = ei

π
2 Ix ei

π
2 I−x =1

U 6τ( ) = LzLyLxLxLyLz = e−iHzτ e−iHyτ e−iHxτ e−iHxτ e−iHyτ e−iHzτ

U 6τ( ) ≈1− i Hz + Hy + 2Hx + Hy + Hz( )τ ≈ e−iH ⋅6τ

H = Hz + Hy + 2Hx + Hy + Hz( ) 6 = Hz + Hy + Hx( ) 3
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In general,  ,  
 
Therefore,    

 

 
So the average Hamiltonian of the WAHUHA-4 sequence is:  
 

 

where the effective chemical shift frequency is:  

 
So WAHUHA -4 has a scaling factor of 0.577 =  for both chemical shift and heteronuclear 
dipolar coupling, and the effective field points along the (1 1 1) diagonal of the cube. We can use 
WAHUHA-4 and analogous sequences in the DIPSHIFT family of experiments to measure 
heteronuclear dipolar couplings, with the couplings scaled down by the corresponding factor.  
 
The propagator algebra can be schematically represented using a toggling frame approach:  
 
1) flip the interaction frame (the coordinate system) around the axis of the pulses in the rotating frame 
(left hand rule).  
2) the axis of the interaction frame coordinate system that is parallel to the z-axis of the rotating frame 
is the ’s spin operator direction.  

3) sum up all the  directions to obtain the average Hamiltonian.  
 
For WAHUHA, the toggling frame directions are:  
 

 
 
So the interaction frame Hamiltonian directions are:  

z,   y,   x,   x,   y,  z 
 

Hα = HCS,α + HIS,α + HII ,α =ω I Iα +ω ISIαSz +ω II 3Iα Iα − I ⋅ I( )

H = Hz + Hy + Hx( ) 3

  

= 1
3
ω I Iz + Ix + Iy( ) + ... IS terms( ) + 1

3
ω II 3IzIz − I ⋅ I( ) + 3IxIx − I ⋅ I( ) + 3IyIy − I ⋅ I( )⎡

⎣
⎤
⎦

magic zero
! "######## $########

= 1
3
ω I Iz + Ix + Iy( ) + IS terms( ) + 0

  
H ⋅6τ = 1

3
ω I Iz + Ix + Iy( ) ⋅6τ + IS terms( ) ⋅6τ =ωeff ⋅

!̂
I ⋅6τ +ωeff ,IS

!̂
ISz ⋅6τ

  

ωeff =
1
3
ωI

1
1
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= 1

3
scaling factor
!

ωI ⋅
1
3

1
1
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

1 3

H1
'

H1
'
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In the rf pulse interaction frame, the effect of the pulses are transformed away. The above result is fully 
equivalent to the algebra that gave .  
  
(Verify that this left-hand toggling frame math is equivalent to right-hand rotations in the interaction 
representation.)  
 
1.2 MREV-8:  
MREV-8 is a concatenation of the WHH-4 sequence, with phase inversion of the outer two pulses:  

 
 

 

It can be shown that the MREV-8 effective frequency is: .  

So the scaling factor is 0.47 = , and the effective field points along the diagonal of the xz plane.  

 
2. Quadrupolar Echo (called solid echo for dipolar coupled spin pairs) 
 

 
 

 
 
The quadrupolar Hamiltonian is:    

The initial 90˚ pulse creates   .  
 
The propagator of the quad echo sequence is:  

 

   

 

 

U 6τ( ) = LzLyLxLxLyLz

 
τ − 90˚−x−τ − 90˚y−τ −τ − 90˚−y−τ − 90˚x−τ −τ − 90˚x−τ − 90˚−y−τ −τ − 90˚y−τ − 90˚−x−τ  ⎡⎣ ⎤⎦n

  

ωeff =
2
3

scaling 
factor

!
ωI ⋅

1
2

1
0
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

2
3

90˚x−τ − 90˚y−τ

Hz,Q =ωQ 3Iz
2 − I ⋅ I( )

ρ 0( ) = Iy

U 2τ( ) = e−iHzQτ ei
π
2 Iye−iHzQτ = e−iHzQτ ei

π
2 Iye−iHzQτ e−i

π
2 Iyei

π
2 Iy⎛

⎝
⎞
⎠

= e
−iωQ 3Iz

2−I ⋅I( )τ e−iωQ 3Ix
2−I ⋅I( )τ eiπ2 Iy

= e
−iωQ 3Iz

2−I ⋅I( )τ e−iωQ 3Ix
2−I ⋅I( )τ IyeiωQ 3Ix

2−I ⋅I( )τ eiωQ 3Iz
2−I ⋅I( )τ

 

ρ 2τ( ) =U 2τ( )ρ 0( )U−1 2τ( ) = e−iωQ 3Iz
2−I ⋅I( )τe−iωQ 3Ix

2−I ⋅I( )τ eiπ2 Iy Iye−i
π
2 Iy

commute
! "# $#

eiωQ 3Ix
2−I ⋅I( )τeiωQ 3Iz

2−I ⋅I( )τ
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To combine the exponents of the product, the two exponents must commute. For spin 1/2 and spin-1 
nuclei, the commutation  can be proven easily (also QE also works for half-integer nuclei):  
 

For spin-1,  

 
The squares of the first two operators are:  

 

 

 

  So .  

 
Under this commutation condition,  
 

 
 
where we invoke the magic zero:   

 

Since , we obtain  . –> an echo forms.  
 
As long as the second 90˚ pulse is along the magnetization direction (-y will work), we will obtain an 
echo.  
 
3. Heteronuclear dipolar recoupling under MAS by p pulses – REDOR  
 
This is the first MAS recoupling sequence we analyze. The basic pulse sequence module is:  

 
 

 

Iz
2, Ix

2⎡⎣ ⎤⎦ = 0

 

Iz =
1
0

−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
,  Ix =

1
2

0 1
1 0 1

1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
,  Iy =

1
2

0 −i
i 0 −i

i 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Iz
2 =

1
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
,  Ix
2 = 1

2

1 1
2

1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Iz
2Ix
2 =

1
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
1
2

1 1
2

1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1
2

1 1

1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Ix
2Iz
2 = 1

2

1 1
2

1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1
2

1 1

1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Iz
2, Ix
2⎡

⎣⎢
⎤
⎦⎥ = 0

 ρ 2τ( ) = e−iωQ 3Iz
2−I ⋅I+3Ix

2−I ⋅I( )τ IyeiωQ 3Ix
2−I ⋅I+3Iz

2−I ⋅I( )τ   =   e
iωQ 3Iy

2−I ⋅I( )τ Iye−iωQ 3Iy
2−I ⋅I( )τ

3Iy
2 − I ⋅ I( ) + 3Iz

2 − I ⋅ I( ) + 3Ix
2 − I ⋅ I( ) = 0

 
3Iy
2 − I ⋅ I ,   Iy⎡

⎣
⎤
⎦ = 0 ρ 2τ( ) = Iy = ρ 0( )

tr 2 −180˚x− tr 2



Prof. Mei Hong, MIT Adapted from MIT course 5.83: Advanced NMR Spectroscopy  

 28 

The propagator is:  .  
 
We know that MAS averages the dipolar coupling, i.e.  

,   or   . 

 

Thus,    

 
Since MAS affects the spatial part of the Hamiltonian, we can write the integral of the Hamiltonian in 
terms of a dipolar phase f:  
 

, 

 

where   

Then ,  
 

 

 
If we repeat the exact sequence, but use x and y pulses:  
 

 
 

 
Then:  

 
 

  

U = LzPxLz = e
−i HIS t( )dttr /2

tr∫
e−iπ Ix e

−i HIS t( )dt0

tr /2∫

e
−i HIS t( )dt0

tr∫ =1 HIS t( )dt
0

tr∫ = 0

HIS t( )dt
tr /2

tr∫ = HIS t( )dt
0

tr∫ − HIS t( )dt
0

tr /2∫ = − HIS t( )dt
0

tr /2∫

HIS t( )dt
0

tr /2∫ = ω IS t( )2IzSz dt0

tr /2∫ = φtr /2 ⋅2IzSz

φtr /2 = ω IS t( )dt
0

tr /2∫

 U = eiφtr /2 2IzSz e−iπ Ix e−iφtr /2 2IzSz
! """""""""""""""""""""""""""time

 

ρ tr( ) =Uρ 0( )U−1 = eiφ2IzSze−iπ Ix e−iφ2IzSzρ 0( )U−1

= eiφ2IzSze−iπ Ix e−iφ2IzSz IxU
−1 = eiφ2IzSze−iπ Ix e−iφ2IzSz eiπ Ix e−iπ Ix( ) IxU−1

= eiφ2IzSzeiφ2IzSz e−iπ Ix Ixe
iπ Ix

commute
! "## $## e−iφ2IzSze−iφ2IzSz = ei2φ2IzSz Ixe

−i2φ2IzSz = Ix cos2φ − 2IySz sin2φ

tr 2−180˚x−tr 2− tr 2−180˚y−tr 2

ρ 2tr( ) = ei2φ2IzSzeiπ Iyρ tr( )U−1 = ei2φ2IzSzeiπ Iy Ix cos2φ − 2IySz sin2φ( )U−1

 

= ei2φ2IzSz −Ix cos2φ − 2IySz sin2φ( )e−i2φ2IzSz
= −Ix cos

2 2φ + 2IySz cos2φ sin2φ − 2IySz sin2φ cos2φ − Ix sin
2 2φ     = −Ix = −ρ 0( )
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At the end of two rotor periods, the density operator reverts to the initial condition. So we created an 
echo, without any net dipolar recoupling! This is because the sign of the dipolar phase in the second 
rotor period cancels that of the first rotor period.  
 
To accumulate the dipolar phase and recouple, we need to add a 180˚ pulse at the end of the first rotor 
period, i.e. apply p pulses every half rotor period:  
 

 
 

 
 

Then, at the end of the first rotor period, before the second p pulse, we have  
 

 
 
Right after the second p pulse,  
 

 
 
Then, the second rotor period imposes the following propagator onto the density operator:  
 

 

 
So now the dipolar phase is accumulated over 2 rotor periods, rather than being canceled.  
 
The general trend is that for n rotor periods of 2n x p pulses that are spaced half a rotor period apart,  
 

 
 

where .  
 
However, if we use this sequence, we also recouple the I-spin chemical shift anisotropy, with  

tr 2 −180˚x− tr 2 −180˚y− tr 2 −180˚x− tr 2

ρ tr−( ) = Ix cos2φ − 2IySz sin2φ

ρ tr+( ) = −Ix cos2φ − 2IySz sin2φ

ρ 2tr( ) = ei2φ2IzSzeiπ Ix −Ix cos2φ − 2IySz sin2φ( )e−iπ Ix e−i2φ2IzSz
= ei2φ2IzSz −Ix cos2φ + 2IySz sin2φ( )e−i2φ2IzSz
= −Ix cos2φ cos2φ + 2IySz cos2φ sin2φ + 2IySz sin2φ cos2φ + Ix sin2φ sin2φ

= −Ix cos
2 2φ − sin2 2φ( ) + 2IySz sin 4φ = −Ix cos4φ + 2IySz sin 4φ

ρ ntr( ) = −Ix cos2nφ − 2IySz sin2nφ

φtr /2 = ω IS t( )dt
0

tr /2∫
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.  
 
To prevent recoupling of I-spin CSA, we move one I spin p pulse, the one in the middle of the whole 
pulse train, to the S-spin channel. For IS dipolar coupling, it doesn’t matter which channel has the p 
pulse, as long as there are two p pulses per rotor period on the two channels. But by moving the central 
p pulse to the S channel, we refocus the S chemical shift evolution, prevent the I-spin CSA recoupling, 
and retain the IS dipolar recoupling.  
 

 
 
 
4. Phase-Alternating Composite Pulses  
 So far we applied AHT to either 1) constant-phase continuous-irradiation sequences, where the 
expression for the interaction-representation spin interactions is sinusoidal oscillation, or 2) delta-
function windowed pulse sequences, where evolution periods alternate with pulses. For the latter we 
used the pictorial toggling frame approach and the unit-operator-insertion propagator approach 
to determine the average H.  
 
But for phase-alternating windowless pulse sequences, the above algebra does not suffice, and a more 
formal and complete way of calculating the interaction-representation Hamiltonian is necessary. An 
example is the composite pulse,  
 

 
 
which achieves broadband population inversion (i.e. inversion of z-magnetization under resonance 
offset). See Tycko, Phys Rev Lett, 51 775-777, 1983.  
 
To show that the resonance offset (i.e. chemical shift) Hamiltonian is averaged to 0 to first order, we 
need to calculate the chemical shift Hamiltonian in the interaction frame of the three successive pulses. 
Although this sounds the same as what we did for WAHUHA, the fact that the pulses are not delta-
function pulses and chemical shift evolution is simultaneous to the pulses calls for a slightly different 
algebra.  
 
Let's write the propagator for a hypothetical pulse-delay-pulse-delay sequence, and insert the unit 
operators as before, but in a more suggestive way. The propagator is:  
 

φCSA = ω I t( )dt
0

tr /2∫
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  (1) 

 
So to calculate the interaction representation Hamiltonian under several pulses, we rotate the spin 
interaction by the pulse immediately before the delay or simultaneous to the spin interaction, and then 
rotate the interaction by the pulse before that. The order of rotation is the last pulse first and first pulse 
last, and the sense of rotation is the right hand (verify).  
 
For the WAHUHA-4 sequence, the interaction representation Hamiltonians are  

 

  (2) 

 
In the composite pulse, during each pulse   
 
The propagator for the composite pulse is then:  
 

    (3) 
 
1st pulse: the chemical shift Hamiltonian in the interaction frame of the rf pulse is:  
 
  (4) 
 
The average chemical shift Hamiltonian is:  
 

  (5) 

 
--------------------------------------------------------------------------------------------------------- 
Note: for simplicity, I have made a sign switch for w1, treating it as the absolute value , so that the 
prediction from the right-hand rotation for interaction-frame transformation can be directly written into 
the equation, at the same time this allows (and requires) us to write the equality that .  
Otherwise, we have to acknowledge that , and deal with the very cumbersome algebraic 
juggernaut of:   

  

U 2τ( ) = LzP2LzP1 
 

 = P2P2
−1( )LzP2 P1P1

−1( )LzP1
= P2 P1P1

−1( )P2−1LzP2P1 P1−1LzP1( )
= P2P1 ⋅ P1

−1P2
−1LzP2P1( )

int rep of the 2nd pulse
  

⋅ P1
−1LzP1( )

int rep of the 1st pulse
  

 

τ −90˚−x  −   τ   −90˚y   −τ −τ −   90˚−y   −τ −   90˚x   −  τ  ⎡⎣ ⎤⎦n
Hz

1st pulse⎯ →⎯⎯⎯   Hy
2nd pulse⎯ →⎯⎯⎯⎯                  Hx → Hx  
3rd pulse⎯ →⎯⎯⎯                                    H−x → Hz → Hy
4th pulse⎯ →⎯⎯⎯                                                                H−y → Hz     

H = Hrf + Hcs =ω1Iα +ω csIz

U = ei ω1Ix+ωcsIz( )tei ω1Iy+ωcsIz( )3tei ω1Ix+ωcsIz( )t

 
H!CS,1 = eiω1Ixt ωcsIz( )e−iω1Ixt =ωcs Iz cosω1t − Iy sinω1t( )

 
H!CS,1

0( )
= ω cs

t
dt ' Iz cosω1t '− Iy sinω1t '( )0

t=π 2ω1∫ = ω cs

ω1t
Iz − Iy( )

ω1

ω1t = π 2
ω1t = −π 2
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! Which is the same result as when 

we treat the frequency in terms of its absolute value (see part of Eq. 5).  
--------------------------------------------------------------------------------------------------------- 
 
2nd pulse:  

  (6) 

 
So  rotation creates a time-dependent oscillation, while the outer  

rotation has a fixed phase of 90˚.  
 
The average Hamiltonian for the second pulse is: 
 

  (7) 

 
3rd pulse:  
 

  (8) 

 

  (9) 

 
The average CS Hamiltonian of  is therefore:  
 

  (10) 

 
Finally, we consider the density operator evolution under this average Hamiltonian:  
 

1
t

+Iy sinω1t dt '0

t
∫ = − 1

ω1t
Iy cosω1t 0

t = − 1
ω1t

Iy 0 −1( ) = 1
−π 2

Iy

 

H!CS,2 = P1
−1P2

−1 ω I Iz( )P2 P1 = ei
π
2 Ix eiω1Iy 3t ω csIz( )e−iω1Iy 3te−iπ2 Ix

=ω cse
iπ2 Ix Iz cos3ω1t + Ix sin 3ω1t( )e−iπ2 Ix =ω cs −Iy cos3ω1t + Ix sin 3ω1t( )

P2
−1HcsP2 P1

−1 P2
−1HcsP2( )P1

 
H!CS,2
0( )

= 1
3t
ωcs −Iy cos3ω1t '+ Ix sin 3ω1t '( )dt '0

t=π 2ω1∫ = ωcs
3ω1t

−Iy −1( )− Ix −1( )( ) = ωcs
3ω1t

Iy + Ix( )

 

H!CS,3 = P1
−1P2

−1P3
−1 ω csIz( )P3P2P1 = ei

π
2 Ix ei

3π
2 Iyeiω1Ixt ω csIz( )e−iω1Ixte−i 3π2 Iye−iπ2 Ix

=ω cs ⋅e
iπ2 Ix ei

3π
2 Iy Iz cosω1t − Iy sinω1t( )e−i 3π2 Iye−iπ2 Ix

=ω cs ⋅e
iπ2 Ix −Ix cosω1t − Iy sinω1t( )e−iπ2 Ix =ω cs ⋅ −Ix cosω1t − Iz sinω1t( )

 
H!CS,3

0( )
= ω cs

t
−Ix cosω1t '− Iz sinω1t '( )dt '

0

t=π 2ω1∫ = ω cs

ω1t
−Ix 1( ) + Iz −1( )( ) = ω cs

ω1t
−Ix − Iz( )

90˚x270˚y90˚x

 

H!CS
0( )
= 1
5t

H!CS,1
0( )

⋅ t + H!CS,2
0( )

⋅3t + H!CS,3
0( )

⋅ t⎡
⎣⎢

⎤
⎦⎥

= 1
5t

ω I
ω1t

Iz − Iy( ) ⋅ t + ω I
3ω1t

Iy + Ix( ) ⋅3t + ω I
ω1

−Ix − Iz( ) ⋅ t⎡

⎣
⎢

⎤

⎦
⎥

= 1
5t

ω I
ω1

Iz − Iy( ) + Iy + Ix( ) + −Ix − Iz( )⎡
⎣

⎤
⎦ = 0
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 (11) 

 
When , the successive rotation by the three pulses produces (Left Hand)  

 .  
 
But if the initial density operator is in the transverse plane, e.g.  then no inversion is 
achieved: .  
 
So this broadband inversion composite pulse works only for z-magnetization, e.g. in REDOR 
sequences, but not for transverse magnetization.  
 
Alternatively, we can also use the toggling frame to analyze the composite pulse. Key: the ending 
coordinate-system orientation of the preceding pulse is the starting orientation of the next pulse.  
 

 
 
The axis of the toggling-frame Hamiltonian along the rotating-frame z-axis indicates the sine 
component of the oscillation (after the pulse flip angle), while the initial operator direction from the 
last step of the transformation gives the cosine component:  
 
1st pulse: start with z, end with –y after 90˚ rotation:  

 for t = 0 to ,    

 
2nd pulse: start with -y, end with –x after 270˚ rotation:  

 for t = 0 to ,   

 
3rd pulse: start with -x, end with –z after 90˚ rotation:  

 for t = 0 to ,   

 

 

ρ t( ) =U t( ) ⋅ ρ 0( ) ⋅U−1 t( ) = Te−iHrf t

Urf t( )
!"# $# U% t( ) ⋅ ρ 0( ) ⋅U%−1 t( )Te−iHrf t

U−1
rf t( )

!"# $#

=Urf t( )e−iH%CS
0( )
t

1
!"# $# ⋅ ρ 0( ) ⋅eiH%CS

0( )
tUrf t( ) = P3P2P1 ⋅ ρ 0( ) ⋅P1P2P3

= e−i
π
2 Ix e−i

3π
2 Iye−i

π
2 Ix ⋅ ρ 0( ) ⋅ei

π
2 Ix ei

3π
2 Iyei

π
2 Ix

ρ 0( ) = Iz ρ 0( ) = Iz →
Iy → Iy → ρ t( ) = −Iz

ρ 0( ) = Ix ,
ρ 0( ) = Ix → Ix →−Iz → ρ t( ) = −Iy

Htog,1 =ω I Iz cosω1t − Iy sinω1t( ) t = π 2
ω1

Htog,1 =
ω I
ω1t

Iz − Iy( )

Htog,2 =ω I −Iy cos3ω1t + Ix sin 3ω1t( ) t = π 2
ω1

Htog,2 =
ω I
3ω1t

Iy + Ix( )

Htog,3 =ω I −Ix cosω1t − Iz sinω1t( ) t = π 2
ω1

Htog,3 =
ω I
ω1t

−Ix − Iz( )
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Average Hamiltonian:  

 

 
 

Htogg
0( ) = 1

5t
H tog,1 ⋅ t + Htog,2 ⋅3t + Htog,3 ⋅ t( ) = ω I

5ω1t
Iz − Iy + Iy + Ix − Ix − Iz( ) = 0


