Solid-State NMR Studies of Molecular Dynamics and Protein Hydration

> Prof. Mei Hong Department of Chemistry Massachusetts Institute of Technology

Motions are Abundant in Biomolecules

Histidine ring motion in the influenza M2 proton channel

Protein motions enable:

- *Ion conduction*
- *Substrate transport*
- *Ligand binding*
- *Catalysis*

….

Amantadine motion in the binding pocket of the M2 proton channel

Motional Timescales that are Accessible to NMR

Common Protein Motions

Internal motions

- Methyl & amine three-site jumps
- Sidechain rotameric jumps (e.g. Leu mt tp)
- *trans-gauche* isomerization (e.g. Lys, Arg)
- Aromatic ring flip
- Torsional fluctuation
- Loop & termini motions

Global motions

- Uniaxial diffusion of membrane proteins in lipid bilayers
- Correlated motions of protein domains

Effects of Molecular Motion on NMR Spectra

Molecular motions can:

- ❖ average NMR lineshapes;
- \div enhance or reduce peak intensities;
- \div speed up relaxation;
- \div complicate spectral quantification;
- \div allow spectral editing

Outline

- Ø *Timescales & amplitudes of motion from NMR*
- Ø *Fast motion: average (sum) tensor*
- Ø *Experiments for measuring fast motion*
- Ø *Slow motion: difference tensor*
- Ø *Experiments for measuring slow motion*

Rates & Amplitudes of Reorientations

- For stochastic motions, correlation function $\overline{C(t)} \sim \langle f(0) \cdot f(t) \rangle$ describes how long it takes to randomize the molecular orientation. C(t) decays with a characteristic time τ_c ;
- *Rates: k* (s⁻¹) is inversely related to correlation time τ_c .

- **Amplitudes:** describes the reorientational angle β_R & the number of sites n_R .
- We do not consider translational motion, which can be studied by pulsed-fieldgradient NMR.
- Diffusive motion: infinitesimal β_R , infinite n_R . e.g. isotropic tumbling, uniaxial diffusion, torsional fluctuations.
- Discrete motion: finite β_R , finite n_R;
	- Methyl 3-site jump: β_R = 109.5°, n_R = 3 for C-H bonds
	- Phenylene ring flip: β_R = 120°, n_R = 2 for ortho and meta C-H bonds

Motional Regimes in NMR

- **Fast motion:** $k > \Delta \omega$ or δ , typically $\tau_c < 1 \mu s$
	- *Amplitudes*: obtained from spectral line narrowing.
		- e.g. ²H spectra, DIPSHIFT, LG-CP, WISE, CSA narrowing.
	- *Rates*: > 10 x δ; Exact rates measured by relaxation NMR.
- **Slow motion: k <<** $\Delta\omega$ **, typically** τ_c **> 10 ms**
	- *Amplitudes*: from cross peaks in 2D exchange spectra or from Nt_rdependent CODEX intensities.
	- *Rates*: decay constant in mixing-time dependent intensities.
	- n_R : from the final value of the CODEX mixing-time curve.
- *Intermediate motion*: k ~ **Δω**.
	- Causes loss of spectral intensity due to interference with ¹H decoupling & MAS.
	- *Rates*: from T₂ and T_{1p} minima in $log(T_{2,10})$ plots vs 1/T.
	- *Amplitudes*: from asymmetric DIPSHIFT intensity decays

Effects of Motion on NMR Spectra

Fast motion: $k > |\omega_A - \omega_B|$ Average frequencies $\overline{\omega}$

Intermediate motion: $k \approx |\omega_A - \omega_B|$

Slow motion: $k \ll |\omega_A - \omega_B|$ Measured during a mixing time.

Fast Motion: Averaging of NMR Frequencies

For a nuclear spin interaction tensor σ :

$$
\omega(\theta,\phi) = \frac{1}{2}\delta \left(3\cos^2\theta - 1 - \eta\sin^2\theta\cos 2\phi\right)
$$

Reorientation among N sites with probability p_j yields an average tensor:

$$
\overline{\omega} = \sum_{j} p_j \omega_j \qquad \Longrightarrow \qquad \text{average tensor } \Sigma = \sum_{j} p_j \sigma_j
$$

- Σ has 3 principal axes $(\Sigma_1, \Sigma_2, \Sigma_3)$.
- Σ is characterized by $\overline{\delta}$, $\overline{\eta}$, which reflect the geometry of motion.
- The orientation of B₀ in the Σ frame: (θ_a, ϕ_a) .

$$
\overline{\omega}(\theta_a, \phi_a) = \overline{\delta} \frac{1}{2} \left(3\cos^2 \theta_a - 1 - \overline{\eta} \sin^2 \theta_a \cos 2\phi_a \right)
$$

 Z_B (final)

Once the average tensor is known, we can predict the *motionally averaged spectrum.*

- In general, $\overline{\delta} \neq \delta$, $\overline{\eta} \neq \eta$.
- For dipolar couplings, $\overline{\delta}$ can be sign-sensitive, and $\overline{\eta} \neq 0$.

How do we determine $\overline{\delta}$ and $\overline{\eta}$?

Averaged Anisotropy & Asymmetry for Some Motional Geometries

• Isotropic motion
$$
\implies \overline{\delta} = 0
$$

• N ≥ 3 C_N jumps $\rightarrow \overline{\eta} = 0$

- For uniaxial rotation and $N \geq 3$ C_N jumps, the z-axis of the average tensor is the symmetry axis, z_D .
- The principal values δ_{ii} are the frequencies when B₀ is parallel to the principal axes.
- δ is the frequency when B₀ is parallel to the z-axis of the **Σ** tensor.
- Under this condition, motion does not change the PAS orientation relative to B_0 , so the frequency depends on the fixed angles (θ_{PD}, ϕ_{PD}) :

$$
\overline{\delta} = \omega \big(\theta_{PD}, \phi_{PD}\big) = \frac{1}{2} \delta \big(3\cos^2\theta_{PD} - 1 - \eta\sin^2\theta_{PD}\cos 2\phi_{PD}\big)
$$

Average Tensor for Two-Site Jumps

2-site jumps averaging a uniaxial (η = 0) interaction: **calculate the frequency when B₀** is parallel to the 3 principal axes of the Σ tensor.

The Σ tensor is invariant under A-B switching: $\Sigma = (\sigma_A + \sigma_B)/2 = (\sigma_B + \sigma_A)/2$

By symmetry, the 3 principal axes should be:

- Σ ₁: Bisector of the AOB angle
- $Σ₂$: Normal to the bisector in the AOB plane
- $Σ₃$: Normal to the AOB plane

-
- 1, 2, 3 convention: left to right, i.e. $\omega_1 > \omega_2 > \omega_3$
- $\cdot \beta$ < 90° and β > 90° switch Σ_1 & Σ_2 axes.

The principal values of the average tensor:

$$
\overline{\omega}_n = \frac{1}{2} \delta \left(3 \cos^2 \Theta_n - 1 \right)
$$

 Θ_n : angle between z_{PAS} and Σ_n

Two-Site Jumps: Phenylene Ring Flip

²H quadrupolar spectra or C-H dipolar spectra (η = 0): Reorientation angle β_R = 120°.

$$
\omega_n = \frac{1}{2} \delta \left(3 \cos^2 \Theta_n - 1 \right)
$$

 \vert

⎨ $\overline{}$

 $\overline{\mathsf{L}}$ $\overline{}$

$$
\Theta_1 = 30^\circ
$$
\n
$$
\Theta_2 = 60^\circ \Rightarrow \begin{cases}\n\overline{\omega}_1 = \frac{5}{8}\delta \\
\overline{\omega}_2 = -\frac{1}{8}\delta\n\end{cases} \Rightarrow \begin{cases}\n\overline{\delta} = \frac{5}{8}\delta \\
\overline{\eta} = 0.6\n\end{cases}
$$

Two-Site Jumps: *trans-gauche* Isomerization

$$
\omega_n = \frac{1}{2} \delta \left(3 \cos^2 \Theta_n - 1 \right)
$$

Two-Site Jumps: Histidine Ring Flip

180˚ jump around the Cβ-Cγ bond:

For the Cγ-Nδ1 bond: $β_R = 2.57°=114°$ $\Theta_1 = 33^\circ$ $\Theta_2 = 57^\circ$ $\Theta_3 = 90^\circ$ \int {
1 $\overline{}$ \lfloor $\overline{}$ ⇒ $\omega_1 = 0.56\delta$ $\omega_2 = -0.06\delta$ $\omega_3 = -0.5\delta$ $\left\lceil \right\rceil$ {
1 $\overline{}$ \lfloor $\overline{}$ ⇒ δ = 0.56 δ $\eta = 0.79$ \int {
1 \vert \lfloor ⇒ *SC*γ−*N*δ¹ = 0.56 $\frac{1}{\omega_n} = \frac{1}{2}$ 2 $\delta \left(3\cos^2{\Theta_n}-1\right)$

For the C δ 2-H δ 2 bond: $\beta_R = 156^\circ$ $\Rightarrow |\bar{\delta} = 0.94 \delta| \Rightarrow S_{C\delta}$ _{2-H δ 2 = 0.94}

Multi-Site Jump: Gaussian Axial Fluctuation

• For motions involving *multiple sites*, the sum tensor is the weighted average of individual tensors: $\omega = \sum p_j \omega_j$ $\sum p_j \omega_j \rightarrow \sum \sum p_j \sigma_j$ ∑

j

• The sum tensor can be diagonalized to give $\overline{\delta}$ and $\overline{\eta}$.

j

Example

- Motion of a Trp sidechain in influenza M2.
- The measured order parameters rule out a simple 2-site jump motion around a single axis.
- Use a *Gaussian biaxial fluctuation model* with widths $\sigma_{\alpha\beta}$ and $\sigma_{\beta\gamma}$ to calculate the average couplings.

Motion of Trp41 in the M2 Proton Channel

 $\sigma_{\alpha\beta}$ ≈ 30 $^\circ$ $\sigma_{\beta\gamma}$ ≈ 15 $^\circ$

Uniaxial Rotation of a Rigid Molecule

Relative to Z_M :

3-fold axis Amantadine is rigid, and all bonds lie on a *diamond lattice* with *tetrahedral angles* relative to the molecular axis, Z_M .

• 12 CD bonds:
$$
\theta_{PM} = 70.5^{\circ}
$$
, 109.5°

• 3 CD bonds:
$$
\theta_{PM} = 0^{\circ}
$$

• If amantadine rotates only around the molecular axis, then the average 2H quadrupolar coupling is:

$$
\overline{\delta} = \frac{1}{2} \delta \left(3 \cos^2 \theta_{PM} - 1 \right)
$$

- 12 CD bonds: $0.33 \cdot \delta = 40 \; kHz$
- 3 CD bonds : $1.0 \cdot \delta = 125$ kHz

Cady et al, *Nature*, 2010.

• If amantadine also rotates around an external axis, the bilayer normal Z_{D} :

$$
\overline{\delta} = \frac{1}{2} \delta \left(3 \cos^2 \theta_{PM} - 1 \right) \cdot \frac{1}{2} \left(3 \cos^2 \theta_{MD} - 1 \right)
$$

$$
= \frac{1}{2} \delta \left(3 \cos^2 \theta_{PM} - 1 \right) \cdot S_{mol}
$$

Amantadine Dynamics in Lipid Bilayers

- 12 CD bonds: $0.33 \cdot \delta = 40 \; kHz$
- 3 CD bonds : $1.0 \cdot \delta = 125$ kHz

$$
Gel phase: S_{mol} \approx 1 \implies \theta_{MD} = 0^{\circ}
$$

Liquid-crystalline phase: $S_{mol} = \pm 0.46 \Rightarrow \theta_{MD} = 37^{\circ}, 80^{\circ}$ Zŋ 80

SSNMR Studies of Molecular Motion

- Ø *Timescales & amplitudes of motion from NMR*
- Ø *Fast motion: average (sum) tensors*
- Ø *Experiments for measuring fast motion*
- Ø *Slow motion: difference tensors*
- Ø *Experiments for measuring slow motion*

The X-1H DIPSHIFT Experiment

- Allows higher v_r to be used to measure small couplings.
- Constant time removes ${}^{1}H$ T₂ decay during t_1 .

Munowitz et al, *J. Am. Chem. Soc.*, 103, 2529 (1981); Hong et al, **J. Magn. Reson.** 129, 85 (1997).

Simulated C-H & N-H DIPSHIFT Time Signals

FSLG for 1H homonuclear decoupling (*k* = 0.577)

23

Python Code for Simulating DIPSHIFT Curves **http://meihonglab.com/**

$\prod_{i=1}^{n}$ HONG LAB **RESEARCH PUBLICATIONS** LAB **PEOPLE MEI HONG SOFTWARE CONTACT** SOFTWARE: FITTING PROGRAMS FOR DIPOLAR-CHEMICAL SHIFT CORRELATION (DIPSHIFT) **EXPERIMENT**

Install Anaconda Navigator or Jupyter

Polysaccharide Dynamics in Plant Cell Walls

Wild type *Arabidopsis* low-methyl-ester mutant

Homogalacturonan $(1-4)$ α -D-GalA

Pectin Tethering of Cellulose Slows Cell Wall Loosening

Wild type *Arabidopsis* Methyl-ester mutant

2D Lee-Goldberg CP for Measuring 13C-1H Dipolar **Couplings**

- \odot Simple: increment CP contact time as t_1 .
- \odot ¹H-¹H dipolar coupling is removed by LG spin lock.
- \odot Can be done under fast MAS (10 40 kHz)
- \odot Frequency-domain dipolar spectrum resolves multiple splittings.
- \odot Scaling factor: $k = \cos(54.7^\circ) = 0.577$.
- \odot CP matching may be unstable under fast MAS.

Van Rossum et al *JACS*, 122, 3465 (2000). Hong et al *JPC*, 106, 7355 (2002).

LG-CP Time Signals

Hartman-Hahn CP does not show distinct dipolar oscillations due to the presence of multi-spin 1H-1H dipolar couplings under slow MAS.

²⁸ Van Rossum et al *JACS*, 122, 3465 (2000). Hong et al *JPC*, 106, 7355 (2002).

Cholesterol Dynamics in Lipid Membranes

LG-CP Average Hamiltonian Analysis

Transform into a tilted frame and the interaction frame of the rf pulses, under the sideband matching condition

$$
\omega_{\text{eff},H} - \omega_{1S} = \pm \omega_r
$$

It can be shown that the average I-S dipolar coupling is the scalar product between a ZQ spin operator and a tilted effective field: $I^{(23)}_-$

$$
\overline{H}_{IS}^{T}(0) = \frac{1}{2} \underbrace{\delta \sin \theta_{m} C_{1}}_{\omega_{IS, LG}} \cdot \underbrace{\left(I_{x}^{(23)}, I_{y}^{(23)}, I_{z}^{(23)}\right)}_{I^{(23)}} \underbrace{\begin{pmatrix} \cos \gamma \\ \sin \gamma \\ 0 \end{pmatrix}}_{B_{IS, LG}} \qquad \overline{H}_{IS, LG}^{T,(0)}
$$
\n
$$
\overline{H}_{II}^{T,(0)} = 0
$$
\n
$$
(23)
$$

DD

SSNMR Studies of Molecular Motion

- Ø *Timescales & amplitudes of motion from NMR*
- Ø *Fast motion: average tensors*
- Ø *Experiments for measuring fast motion*
- Ø *Slow motion: difference tensors*
- Ø *Experiments for measuring slow motion*

Slow Motion: 2D Exchange NMR

Schmidt-Rohr and Spiess, *Multidimensional Solid-State NMR and Polymers*, 1994.

1D Stimulated Echo: Time-Domain Exchange

- 1D analog of 2D exchange spectra.
- Allows rapid measurement of τ_c without 2D.

2D time signal:

$$
f(t_1,t_2) = \left\langle \left[\cos \omega(\theta_1)t_1 - i \sin \omega(\theta_1)t_1 \right] \cdot e^{i\omega(\theta_2)t_2} \right\rangle = \underbrace{\left\langle e^{-i\omega(\theta_1)t_1} \cdot e^{i\omega(\theta_2)t_2} \right\rangle}
$$

powder averaging

1D time signal: $t_2 = t_1 = t_e$.

• Segments without frequency change: $\omega(\theta_1) = \omega(\theta_2) = \omega$ (diagonal).

$$
M(t_e) = \left\langle e^{-i\omega t_e} \cdot e^{i\omega t_e} \right\rangle = \underbrace{\langle \mathbf{1} \rangle}_{2 \text{ scans}}
$$

• Segments with frequency change:

$$
M(t_e) = \left\langle e^{-i\omega(\theta_1)t_e} \cdot e^{i\omega(\theta_2)t_e} \right\rangle = \left\langle e^{i\omega[(\theta_2) - \omega(\theta_1)]t_e} \right\rangle \underset{\text{long } t_m}{\rightarrow} 0
$$

1D stimulated echo intensity = 2D diagonal intensity

1D Stimulated Echo Under MAS: CODEX

- 180˚ pulse train recouples X-spin CSA.
- 90° storage and read-out pulses are phase-cycled together.
- After the 2nd recoupling period, the MAS phase for 2 scans is:

$$
\cos \Phi_1 \cos \Phi_2 - \sin \Phi_1 \sin \Phi_2 = \cos (\Phi_1 + \Phi_2) = \cos (|\Phi_2| - |\Phi_1|)
$$

$$
\Phi_1 = \frac{N}{2} \Big(\int_0^{t_r/2} \omega_1(t) dt - \int_{t_r/2}^{t_r} \omega_1(t) dt \Big) = N \int_0^{t_r/2} \omega_1(t) dt
$$

$$
\Phi_2 = \frac{N}{2} \Big(- \int_0^{t_r/2} \omega_2(t) dt + \int_{t_r/2}^{t_r} \omega_2(t) dt \Big) = -N \int_0^{t_r/2} \omega_2(t) dt
$$

- No motion: $\omega_1 = \omega_2$, \Rightarrow cos($\Phi_1 + \Phi_2$) = 1, full echo.
- With motion: $\omega_1 \neq \omega_2$, \Rightarrow cos($\Phi_1 + \Phi_2$) < 1, reduced echo.

deAzevedo…Schmidt-Rohr, *J. Chem. Phys.*, 112, 8988 (2000)*.*

Exchange NMR Involves Difference Tensor

CODEX signal:

$$
\frac{S(t_m, \delta N t_r)}{S_0(t_m, \delta N t_r)} = \cos(|\Phi_2| - |\Phi_1|) = \cos(|\Phi^{\Delta}|), \text{ where } \Phi^{\Delta} = N \int_2^{t_r/2} \omega^{\Delta}(t) dt
$$

Difference tensor: $\Delta = \sigma_A - \sigma_B$

Reflection of the Z_A *and* Z_B *axes with the bisector plane gives the opposite of the original difference tensor.*

For $\eta = 0$, the Δ tensor's principal axis directions are:

- Δ_2 : Normal of the AOB plane;
- Δ_3 and Δ_1 : in the AOB plane, 45° from the bisector.

$$
\sigma_{\mathbf{A}} \qquad \sigma_{\mathbf{B}}
$$
\n
$$
\Delta_1 \text{ axis:} \quad 45^\circ - \beta/2, \qquad 45^\circ + \beta/2
$$
\n
$$
\Delta_2 \text{ axis:} \quad 90^\circ, \qquad 90^\circ
$$
\n
$$
\Delta_3 \text{ axis:} \quad 45^\circ + \beta/2, \qquad 45^\circ - \beta/2
$$

$$
\omega_n^{\Delta} = \frac{1}{2} \delta \left(3 \cos^2 \Theta_{A,n} - 1 \right) - \frac{1}{2} \delta \left(3 \cos^2 \Theta_{B,n} - 1 \right)
$$

CODEX is Sensitive to Small-Angle Reorientations

For
$$
Z_A
$$
:
\n
$$
\omega_{A,2} = \frac{1}{2}\delta \left(3\cos^2 90^\circ - 1\right) = -\frac{1}{2}\delta \qquad \qquad \omega_{B,2} = \frac{1}{2}\delta \left(3\cos^2 90^\circ - 1\right) = -\frac{1}{2}\delta
$$
\n
$$
\omega_{A,1} = \frac{1}{2}\delta \left(3\cos^2 \left(45^\circ - \beta/2\right) - 1\right) \qquad \qquad \omega_{B,1} = \frac{1}{2}\delta \left(3\cos^2 \left(45^\circ + \beta/2\right) - 1\right)
$$
\n
$$
\omega_{A,3} = \frac{1}{2}\delta \left(3\cos^2 \left(45^\circ + \beta/2\right) - 1\right) \qquad \qquad \omega_{B,3} = \frac{1}{2}\delta \left(3\cos^2 \left(45^\circ - \beta/2\right) - 1\right)
$$

- CODEX signal scales ~ *sin*β, which is ~β for small angles.
- Usual angular dependence is (3cos2β-1)/2**,** which scales ~β2 .

Schmidt-Rohr et al, *Encyclop NMR*, 9, 633 (2002).

Summary

Motions are ubiquitous in biological molecules.

- Fast motions *average* the interaction tensors and *narrow the spectra*.
- The *average tensors* and spectral lineshapes of several common motions can be analytically derived.
- Fast motions can be measured using 2D SLF experiments that resolve dipolar couplings by chemical shifts.
- *Order parameters & order tensors* give information on rigid-body motions as well as internal motions.
- Slow motions can be measured as *2D exchange cross peaks* or 1D *CODEX* stimulated echo intensities.
- The geometry of slow motion is described by *difference tensors*.

Hydration of Biomolecular Systems

Water in Amyloid Fibrils

Wild-type Aβ40 (E22Δ) Osaka Aβ40 Transthyretin

TTR(105-115)

Paravastu et al, **PNAS**, 2008. Schultz et al, **Angew.**

Chemie, 2015.

Fitzpatrick et al, *PNAS*, 2013.

Water-Edited 2D Solid-State NMR Experiments

Water-edited 2D NC_{α}

¹H T₁ Saturation-Recovery 2D hNH

Water-Edited 2D hNH

Structure and Dynamics of Tau Fibrils

Water-Edited 2D CC Spectra of Tau

Water-Edited 2D NC Spectra of Tau

Water-edited 2D NC_{α}

Dregni, Duan, and Hong, *Biochemistry*, 2020.

Hydrated versus Dry Residues in Tau Fibrils

Dregni, Duan, and Hong, **Biochemistry**, 2020.

Hydration of a Membrane Ion Channel

Mandala, McKay, Shcherbakov, Dregni, Kolocouris & Hong, *Nat. Struc. Mol. Biol*, 2020. ⁴⁷

1H-Detected Water-Edited 2D NMR Experiments

Water-Edited 2D hNH

¹H T₁ Saturation-Recovery 2D hNH

EmrE: A Proton-Coupled Multidrug-Resistance **Transporter**

Hydration of the Substrate Binding Pocket of EmrE

Shcherbakov, Spreacker, Dregni, Henzler-Wildman & Hong, *Nature Commun. 2022.* ⁵¹

MD Simulations of Water in Influenza M2 Channels

Water in BM2 Channels: More Water @ Low pH

Water in the BM2 Channel is Anisotropic

Most probable water orientations

Gelenter, Mandala, Niesen, Sharon, Dregni, Willard and Hong, *Commun. Biol.* 2021 54