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Motions are Abundant in Biomolecules

Protein motions enable:
• Ion conduction 
• Substrate transport
• Ligand binding 
• Catalysis
….
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Histidine ring motion in the 
influenza M2 proton channel

Hu et al, Science, 2010.



Amantadine motion in the binding pocket of the M2 
proton channel

Cady et al, Nature, 2010. 3



Motional Timescales that are Accessible to NMR
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Internal motions

Global motions

• Methyl & amine three-site jumps

• Sidechain rotameric jumps (e.g. Leu mt - tp)

• trans-gauche isomerization (e.g. Lys, Arg) 

• Aromatic ring flip

• Torsional fluctuation 

• Loop & termini motions

• Uniaxial diffusion of membrane 
proteins in lipid bilayers

• Correlated motions of protein domains

Common Protein Motions



Ø Timescales & amplitudes of motion from NMR
Ø Fast motion: average (sum) tensor
Ø Experiments for measuring fast motion
Ø Slow motion: difference tensor
Ø Experiments for measuring slow motion

v average NMR lineshapes;
v enhance or reduce peak intensities; 
v speed up relaxation; 
v complicate spectral quantification;
v allow spectral editing

Effects of Molecular Motion on NMR Spectra
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Outline

Molecular motions can:



Rates & Amplitudes of Reorientations

• For stochastic motions, correlation function
describes how long it takes 

to randomize the molecular orientation. C(t) 
decays with a characteristic time τc; 

• Rates: k (s-1) is inversely related to correlation 
time τc. 

C t( ) ~ f 0( ) ⋅ f t( )

• Amplitudes: describes the reorientational angle βR & the number of sites nR. 
• We do not consider translational motion, which can be studied by pulsed-field-

gradient NMR.
• Diffusive motion: infinitesimal βR, infinite nR. e.g. isotropic tumbling, uniaxial 

diffusion, torsional fluctuations. 
• Discrete motion: finite βR, finite nR; 

• Methyl 3-site jump: βR = 109.5˚, nR = 3 for C-H bonds 
• Phenylene ring flip: βR = 120˚, nR = 2 for ortho and meta C-H bonds 

tc
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Motional Regimes in NMR

• Fast motion:  k >> Δω or δ, typically τc < 1 μs 
• Amplitudes: obtained from spectral line narrowing.

• e.g. 2H spectra, DIPSHIFT, LG-CP, WISE, CSA narrowing.
• Rates: > 10 x δ; Exact rates measured by relaxation NMR. 

• Slow motion: k << Δω, typically τc > 10 ms 
• Amplitudes: from cross peaks in 2D exchange spectra or from Ntr-
dependent CODEX intensities. 
• Rates: decay constant in mixing-time dependent intensities.
• nR: from the final value of the CODEX mixing-time curve.

• Intermediate motion: k ~ Δω.
• Causes loss of spectral intensity due to interference with 1H decoupling & 
MAS.  
• Rates: from T2 and T1r minima in log(T2,1ρ) plots vs 1/T.
• Amplitudes: from asymmetric DIPSHIFT intensity decays



Effects of Motion on NMR Spectra

Palmer, Chem. Rev. 2004.

Intermediate motion: k ≈ ωA −ωB

equal population 
(pA = pB = 0.5)

skewed population 
(pA = 0.75; pB = 0.25)

Slow motion: k << ωA −ωB
Measured during a mixing time.

Fast motion: k >> ωA −ωB
Average frequencies     ω
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Fast Motion: Averaging of NMR Frequencies

ω θ ,φ( ) = 1
2δ 3cos2θ −1−η sin2θ cos2φ( )

• Σ  has 3 principal axes (Σ1, Σ2, Σ3). 

• Σ  is characterized by δ , η,  which reflect the geometry of motion.

• The orientation of B0  in the Σ  frame :  (θa, φa ).

ω θa ,φa( ) =δ 1
2 3cos

2θa −1−η sin
2θa cos2φa( )

Once the average tensor is known, we can predict the 
motionally averaged spectrum.

For a nuclear spin interaction tensor σ :

   

• In general, δ ≠δ,  η ≠η.

• For dipolar couplings, δ  can be sign- sensitive, and  η ≠ 0.

 How do we determine δ  and η?

Reorientation among N sites with probability pj yields an average tensor:

ω = pjω j
j
∑ average tensor Σ = pjσ j

j
∑
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Averaged Anisotropy & Asymmetry for Some 
Motional Geometries

• For uniaxial rotation and N ≥ 3 CN jumps, the z-axis of the 
average tensor is the symmetry axis, zD. 

• is the frequency when B0 is parallel to the z-axis of the 
Σ tensor. 
δ

δ =ω θPD ,φPD( ) = 1
2δ 3cos2θPD −1−η sin2θPD cos2φPD( )

• Isotropic motion δ = 0 η = 0}
• Uniaxial rotation
• N ≥ 3 CN jumps

• The principal values dii are the frequencies when B0 is 
parallel to the principal axes. 

• Under this condition, motion does not change the PAS 
orientation relative to B0, so the frequency depends on 
the fixed angles (θPD, ϕPD):
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Fast Methyl Three-Site Jumps

slow intermediate fast
k 104 s-1 106 s-1 108 s-1

η = 0, θPD = 109.5˚

η = 0, θPD = 90˚

δ =ω θPD ,φPD( ) = 1
2δ 3cos

2θPD −1−η sin
2θPD cos2φPD( )

• 1H-1H dipolar coupling

• 13C-1H dipolar coupling or 2H quadrupolar coupling

S ≡ δ δ    
SCH ,methyl = −1 3
SHH ,methyl = −1 2

⎧
⎨
⎪

⎩⎪
Order parameter: 

δ = 1
2δ 3cos2109.5°−1( ) = −δ 3,    η = 0

δ = 1
2δ 3cos2 90°−1( ) = −δ 2,     η = 0

Palmer, Williams, and McDermott, 
J. Phys. Chem., 100, 13293 
(1996).
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Average Tensor for Two-Site Jumps 

ωn =
1
2
δ 3cos2Θn −1( )

By symmetry, the 3 principal axes should be:  

The principal values of the average tensor: 

σA σB

Σ1 axis:    β/2, β/2
Σ2 axis:    90˚+β/2,     90˚-β/2
Σ3 axis:    90˚, 90˚                    

i 1, 2, 3 convention: left to right, i.e. ω1 >ω2 >ω3
i β < 90˚ and β > 90˚ switch Σ1  & Σ2  axes.

Σ1:  Bisector of the AOB angle
Σ2:  Normal to the bisector in the AOB plane
Σ3:  Normal to the AOB plane 

The Σ tensor is invariant under A-B switching: Σ = σ A +σ B( ) 2 = σ B +σ A( ) 2

Qn: angle between zPAS and Σn

2-site jumps averaging a uniaxial (η = 0) interaction: calculate the frequency 
when B0 is parallel to the 3 principal axes of the Σ tensor. 



Θ1 = 30°
Θ2 = 60°
Θ3 = 90°

⎧

⎨
⎪

⎩
⎪

⇒

ω1 = 5
8δ

ω 2 = − 1
8δ

ω 3 = − 1
2δ

⎧

⎨
⎪⎪

⎩
⎪
⎪

⇒
δ = 58δ
η = 0.6

⎧

⎨
⎪

⎩
⎪
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Two-Site Jumps: Phenylene Ring Flip
2H quadrupolar spectra or C-H dipolar spectra (η = 0):
Reorientation angle βR = 120˚.

η ≠ 0 for the average dipolar tensor.

ωn =
1
2
δ 3cos2Θn −1( )
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Two-Site Jumps: trans-gauche Isomerization 

slow intermediate fast

k 104 s-1 106 s-1 108 s-1

 δ =
1
2δ,  η =1

βR = 109.5˚: θn = 35.3˚, 54.7˚, 90˚:
 
 ⇒   ωn =

δ
2
,  0,  − δ

2
.

• For C-H dipolar coupling or 2H quadrupolar coupling: 

Palmer, Williams, and 
McDermott, J. Phys. Chem., 
100, 13293 (1996).

ωn =
1
2
δ 3cos2Θn −1( )



Two-Site Jumps: Histidine Ring Flip

180˚ jump around the Cβ-Cγ bond: 

βR = 2 ⋅57˚=114˚For the Cγ-Nδ1 bond: 

Θ1 = 33°
Θ2 = 57°
Θ3 = 90°

"

#
$

%
$

⇒
ω1 = 0.56δ
ω2 = −0.06δ
ω3 = −0.5δ

"

#
$

%
$

⇒
δ = 0.56δ
η = 0.79

"
#
$

%$
⇒ SCγ−Nδ1 = 0.56

 For the Cδ2-Hδ2 bond: βR =156˚ ⇒  δ = 0.94δ  ⇒  SCδ2−Hδ2 = 0.94
16

ωn =
1
2
δ 3cos2Θn −1( )



17

Multi-Site Jump: Gaussian Axial Fluctuation

• For motions involving multiple sites, the sum tensor is the weighted average of 
individual tensors: 

• The sum tensor can be diagonalized to give              . δ and η

ω = p jω j
j
∑   →   Σ = p jσ j

j
∑

• Motion of a Trp sidechain in influenza M2. 

• The measured order parameters rule out a 
simple 2-site jump motion around a single 
axis. 

• Use a Gaussian biaxial fluctuation 
model with widths sab and sbg to calculate 
the average couplings.

Example
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Motion of Trp41 in the M2 Proton Channel

sab ≈ 30˚
sbg≈ 15˚ 
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Uniaxial Rotation of a Rigid Molecule
3-fold axis

Amantadine is rigid, and all bonds lie on a diamond lattice
with tetrahedral angles relative to the molecular axis, ZM.

Relative to ZM: 

• If amantadine also rotates around an external axis, the 
bilayer normal ZD:

 

• 12 CD bonds :  θPM = 70.5˚,  109.5˚
• 3 CD bonds :    θPM = 0˚

• If amantadine rotates only around the molecular axis, 
then the average 2H quadrupolar coupling is: 

 

• 12 CD bonds:  0.33⋅δ = 40 kHz
• 3 CD bonds :   1.0 ⋅δ =125 kHz

δ = 12δ 3cos
2θPM −1( )

 

δ = 12δ 3cos
2θPM −1( ) ⋅ 12 3cos2θMD −1( )

   = 12δ 3cos
2θPM −1( ) ⋅Smol

Cady et al, Nature, 2010.
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2H quadrupolar coupling (kHz)

Amantadine Dynamics in Lipid Bilayers

Smol =±0.46  ⇒   θMD = 37˚,  80˚

Cady et al, Nature, 2010.

 

• 12 CD bonds:  0.33⋅δ = 40 kHz
• 3 CD bonds :   1.0 ⋅δ =125 kHz

Liquid-crystalline phase:

Smol ≈ 1 ⇒  θMD = 0°Gel phase:



SSNMR Studies of Molecular Motion

21

Ø Timescales & amplitudes of motion from NMR
Ø Fast motion: average (sum) tensors
Ø Experiments for measuring fast motion
Ø Slow motion: difference tensors
Ø Experiments for measuring slow motion
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• A separated-local-field (SLF) technique.
• Requires 1H-1H homonuclear decoupling 

DIPSHIFT

• Allows higher νr to be used to measure small couplings. 
• Constant time removes 1H T2 decay during t1. 

    

€ 

ωexp = 2 ⋅ δXH ⋅khomo

Doubled DIPSHIFT

The X-1H DIPSHIFT Experiment

Munowitz et al, J. Am. Chem. Soc., 103, 2529 (1981); 
Hong et al, J. Magn. Reson. 129, 85 (1997).

  

Ψ2× t1( ) = ω t( )dt
0

t1∫ − ω t( )dt
t1

τ r∫ = ...
0

t1∫ − ...
0

τ r∫
0  


− ...
0

t1∫
'

(

)
)

*

+

,
,

= 2 ω t( )dt
0

t1∫ = 2Ψ t1( )

 Ψ t1( ) = ω t( )dt
0

t1∫ ,  where ω∝δ ⋅S ⋅ k

Coupling constant Scaling factor



Simulated C-H & N-H DIPSHIFT Time Signals
FSLG for 1H homonuclear decoupling (k = 0.577)
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2 x C-H

2 x N-H



Python Code for Simulating DIPSHIFT Curves
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http://meihonglab.com/

Install Anaconda Navigator or Jupyter



Polysaccharide Dynamics in Plant Cell Walls

Wild type Arabidopsis
low-methyl-ester mutant

25
Pyae Phyo



Methyl-ester mutantWild type Arabidopsis

Pectin Tethering of Cellulose Slows Cell Wall 
Loosening
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2D Lee-Goldberg CP for Measuring 13C-1H Dipolar 
Couplings

J Simple: increment CP contact time as t1.
J 1H-1H dipolar coupling is removed by LG spin lock. 
J Can be done under fast MAS (10 - 40 kHz)
J Frequency-domain dipolar spectrum resolves multiple splittings.
J Scaling factor: k = cos(54.7˚) = 0.577.

L CP matching may be unstable under fast MAS. 

Van Rossum et al JACS, 122, 3465 (2000).    Hong et al JPC, 106, 7355 (2002).

Magic-angle tilted spin lock on 1H:



LG-CP Time Signals

Hartman-Hahn CP does not show distinct dipolar oscillations due to the 
presence of multi-spin 1H-1H dipolar couplings under slow MAS.

28Van Rossum et al JACS, 122, 3465 (2000).    Hong et al JPC, 106, 7355 (2002).
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Cholesterol Dynamics in Lipid Membranes

Elkins, Bandara, Pantelopulos, Straub and Hong, submitted.
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LG-CP Average Hamiltonian Analysis

Transform into a tilted frame and the interaction frame of 
the rf pulses, under the sideband matching condition

 
H II
T , 0( )

=0
30

  

H t( ) =ω1I Ix +ω1SSx
rf pulses

   +ΔωI Iz +ωIS t( ) IzSz
to transfer pol.
  

+ωII t( ) 3IzIz − I ⋅ I( )
to remove

  

ωIS t( ) = 2δ C1 cos ωrt +γ( )+C2 cos 2ωrt +2γ( )$% &'

ωeff ,H −ω1S =±ωr

  

HIS
T 0( )

= 12δ sinθmC1
ωIS,LG

   i Ix
23( ),  Iy

23( ),  Iz
23( )( )

I 23( )
   

cosγ
sinγ
0

%

&

'
'
'

(

)

*
*
*

BIS,LG


It can be shown that the average I-S dipolar coupling is the scalar product 
between a ZQ spin operator and a tilted effective field:  



SSNMR Studies of Molecular Motion
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Ø Timescales & amplitudes of motion from NMR
Ø Fast motion: average tensors
Ø Experiments for measuring fast motion
Ø Slow motion: difference tensors
Ø Experiments for measuring slow motion
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Slow Motion: 2D Exchange NMR
2D spectrum S(ω1, ω2): a joint 
probability: 
• intensity distribution: motion geometry.
• tm dependence: correlation time.

S (ω1, ω2 ; β) 
(for η = 0)

Schmidt-Rohr and Spiess, Multidimensional Solid-State NMR and Polymers, 1994.



1D Stimulated Echo: Time-Domain Exchange
• 1D analog of 2D exchange spectra.

• Allows rapid measurement of τc without 2D. 

1D time signal: t2 = t1 = te. 
• Segments without frequency change: ω(θ1) = ω(θ2) = ω(diagonal).

   
M te( ) = e−iωte ⋅ eiωte = 1

2 scans


• Segments with frequency change:

  
M te( ) = e−iω θ1( )te ⋅ eiω θ2( )te = eiω θ2( )−ω θ1( )%& '(te →

long tm
 0

1D stimulated echo intensity = 2D diagonal intensity

2D time signal: 

33

f t1,t2( ) = cosω θ1( )t1 − isinω θ1( )t1⎡⎣ ⎤⎦ ⋅e
iω θ2( )t2 = e−iω θ1( )t1 ⋅eiω θ2( )t2

powder averaging
! "### $###
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1D Stimulated Echo Under MAS: CODEX

• 180˚ pulse train recouples X-spin CSA.
• 90˚ storage and read-out pulses are phase-cycled together. 
• After the 2nd recoupling period, the MAS phase for 2 scans is:

Φ1 =
N
2

ω1 t( )dt0

tr 2∫ − ω1 t( )dttr 2

tr∫( ) = N ω1 t( )dt0

tr 2∫

Φ2 =
N
2
− ω2 t( )dt0

tr 2∫ + ω2 t( )dttr 2

tr∫( ) = −N ω2 t( )dt0

tr 2∫

Rec: y
y

deAzevedo…Schmidt-Rohr, J. Chem. Phys., 112, 8988 (2000).

cosΦ1 cosΦ2 − sinΦ1 sinΦ2 = cos Φ1+Φ2( ) = cos Φ2 − Φ1( )

• No motion:   ω1 = ω2, –> cos(Φ1+Φ2) = 1, full echo. 
• With motion: ω1 ≠ ω2, –> cos(Φ1+Φ2) < 1, reduced echo. 



Exchange NMR Involves Difference Tensor

Δ ≡σ A −σ B

For η = 0, the Δ tensor’s principal axis directions are: 
• Δ2: Normal of the AOB plane; 
• Δ3 and Δ1: in the AOB plane, 45˚ from the bisector.

σA σB

Δ1 axis:   45˚-β/2,      45˚+β/2
Δ2 axis:   90˚, 90˚
Δ3 axis:   45˚+β/2, 45˚-β/2

ωn
Δ = 1

2δ 3cos
2ΘA,n −1( )− 1

2δ 3cos
2ΘB,n −1( )

CODEX signal: 

 

S tm ,δNtr( )
S0 tm ,δNtr( )

= cos Φ2 − Φ1( ) = cos ΦΔ( ),   where ΦΔ = N ωΔ t( )dt2

tr /2∫

Difference tensor: 

Reflection of the ZA and ZB axes with the bisector plane gives the opposite 
of the original difference tensor. 
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ω2
Δ =ωA,2 −ωB,2 = 0

ω1
Δ =ωA,1 −ωB,1 =

3
2δ ⋅

1
2 cos 90°−β( )− cos 90°+β( )'( )*= 32δ sinβ

ω3
Δ =ωA,3 −ωB,3 =

3
2δ ⋅

1
2 cos 90°+β( )− cos 90°−β( )'( )*= − 32δ sinβ

36

CODEX is Sensitive to Small-Angle Reorientations

€ 

  

€ 

⇒   ηΔ = 1
ω33
Δ − ω11

Δ = 3δ ⋅ sinβ = ω33 − ω11 ⋅2 sinβ

For ZA :                                                        For ZB
ωA,2 =

1
2δ 3cos2 90°−1( ) = − 1

2δ                  ωB,2 =
1
2δ 3cos2 90°−1( ) = − 1

2δ

ωA,1 =
1
2δ 3cos2 45°−β 2( )−1( )                  ωB,1 =

1
2δ 3cos2 45°+β 2( )−1( )

ωA,3 =
1
2δ 3cos2 45°+β 2( )−1( )                  ωB,3 =

1
2δ 3cos2 45°−β 2( )−1( )

• CODEX signal scales ~ sinβ, which is ~β for small angles. 
• Usual angular dependence is (3cos2β-1)/2, which scales ~β2 . 



CODEX: Reorientation Angles & Number of Sites

E tm ,δNtr( ) = R β( )ε δNtr;β( )dt ⋅dβ0
90°∫

  

€ 

ε δNtr;β( )

ΔS
S0

tm >> τ c,δNtr >>1( )

        =1− 1
M

Jump motions: 

3-site jump

Isotropic 
jump

Isotropic 
diffusion

Uniaxial 
rotation

Schmidt-Rohr et al, Encyclop NMR, 9, 633 (2002).

2/3
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Summary

• Fast motions average the interaction tensors and narrow the spectra. 
• The average tensors and spectral lineshapes of several common motions 

can be analytically derived. 
• Fast motions can be measured using 2D SLF experiments that resolve 

dipolar couplings by chemical shifts. 

• Order parameters & order tensors give information on rigid-body motions 
as well as internal motions. 

• Slow motions can be measured as 2D exchange cross peaks or 1D 
CODEX stimulated echo intensities. 

• The geometry of slow motion is described by difference tensors.
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Motions are ubiquitous in biological molecules. 



Hydration of Biomolecular Systems

39
Williams & Hong, JMR, 2014.



Water in Amyloid Fibrils

Paravastu et al, PNAS, 2008. Schultz et al, Angew. 
Chemie, 2015.

Fitzpatrick et al, PNAS, 2013. 

Wild-type Aβ40 (E22Δ) Osaka Aβ40 Transthyretin
TTR(105-115)
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Water-Edited 2D Solid-State NMR Experiments
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Structure and Dynamics of Tau Fibrils
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Dregni, Duan, and Hong, Biochemistry, 2020.

Water-Edited 2D CC Spectra of Tau
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Dregni, Duan, and Hong, Biochemistry, 2020.

Water-Edited 2D NC Spectra of Tau
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Dregni, Duan, and Hong, Biochemistry, 2020. 45



Hydrated versus Dry Residues in Tau Fibrils

Pu DuanDregni, Duan, and Hong, Biochemistry, 2020.
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Water-transferred intensities

Lipid-transferred intensities

Hydration of a Membrane Ion Channel

Mandala, McKay, Shcherbakov, Dregni, Kolocouris & Hong, Nat. Struc. Mol. Biol, 2020.
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Open State of the E 
Channel: Higher 
Water Accessibility

Water-edited 2D CC: 9 ms & 100 ms 1H mixing
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1H-Detected Water-Edited 2D NMR Experiments
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EmrE: A Proton-Coupled Multidrug-Resistance 
Transporter

Periplasm (low pH)

Cytoplasm (neutral pH)

Prior NMR studies: Katie Henzler-Wildman, Nate Traaseth, Clemens Glaubitz 50



Hydration of the Substrate Binding Pocket of EmrE

Shcherbakov, Spreacker, Dregni, Henzler-Wildman & Hong, Nature Commun. 2022.
51



MD Simulations of Water in Influenza M2 Channels

Michiel Niesen, Dina Sharon, Adam Willard
52



Water in BM2 Channels: More Water @ Low pH

Marty Gelenter Shiva Mandala
Gelenter …Hong, Comm. Biol. 2021 
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Water in the BM2 Channel is Anisotropic

Rigid-limit water 
1H CSA: 28 ppm

Gelenter, Mandala, Niesen, Sharon, Dregni, Willard and Hong, Commun. Biol. 2021 54
Marty

Most probable water orientations

w1 = 2wr
14 kHz MAS, spin lock @ 28 kHz


