Solid-State NMR Studies of Nolecular Dynamics and Protein Hydration

> Prof. Mei Hong Department of Chemistry Massachusetts Institute of Technology

Motions are Abundant in Biomolecules

Histidine ring motion in the influenza M2 proton channel

Protein motions enable:

- Ion conduction
- Substrate transport
- Ligand binding
- Catalysis

Amantadine motion in the binding pocket of the M2 proton channel

Cady et al, *Nature*, 2010.

Motional Timescales that are Accessible to NMR

Common Protein Motions

Internal motions

- Methyl & amine three-site jumps
- Sidechain rotameric jumps (e.g. Leu mt tp)
- *trans-gauche* isomerization (e.g. Lys, Arg)
- Aromatic ring flip
- Torsional fluctuation
- Loop & termini motions

Global motions

- Uniaxial diffusion of membrane proteins in lipid bilayers
- Correlated motions of protein domains

γ	
Stor or	
	•

Effects of Molecular Motion on NMR Spectra

Molecular motions can:

- average NMR lineshapes;
- enhance or reduce peak intensities;
- speed up relaxation;
- complicate spectral quantification;
- allow spectral editing

Outline

- Timescales & amplitudes of motion from NMR
- Fast motion: average (sum) tensor
- Experiments for measuring fast motion
- Slow motion: difference tensor
- Experiments for measuring slow motion

Rates & Amplitudes of Reorientations

- For stochastic motions, correlation function $C(t) \sim \langle f(0) \cdot f(t) \rangle$ describes how long it takes to randomize the molecular orientation. C(t) decays with a characteristic time τ_c ;
- *Rates*: k (s⁻¹) is inversely related to correlation time τ_c.

- **Amplitudes:** describes the reorientational angle β_R & the number of sites n_R .
- We do not consider translational motion, which can be studied by pulsed-field-gradient NMR.
- Diffusive motion: infinitesimal β_R, infinite n_R. e.g. isotropic tumbling, uniaxial diffusion, torsional fluctuations.
- Discrete motion: finite β_R , finite n_R ;
 - Methyl 3-site jump: $\beta_R = 109.5^\circ$, $n_R = 3$ for C-H bonds
 - Phenylene ring flip: $\beta_R = 120^\circ$, $n_R = 2$ for ortho and meta C-H bonds

Motional Regimes in NMR

- **Fast motion:** $k \gg \Delta \omega$ or δ , typically $\tau_c < 1 \ \mu s$
 - Amplitudes: obtained from spectral line narrowing.
 - e.g. ²H spectra, DIPSHIFT, LG-CP, WISE, CSA narrowing.
 - *Rates*: > 10 x δ ; Exact rates measured by relaxation NMR.
- Slow motion: k << $\Delta \omega$, typically τ_c > 10 ms
 - *Amplitudes*: from cross peaks in 2D exchange spectra or from Nt_r-dependent CODEX intensities.
 - *Rates*: decay constant in mixing-time dependent intensities.
 - n_R : from the final value of the CODEX mixing-time curve.
- Intermediate motion: $k \sim \Delta \omega$.
 - Causes loss of spectral intensity due to interference with ¹H decoupling & MAS.
 - *Rates*: from T_2 and $T_{1\rho}$ minima in log $(T_{2,1\rho})$ plots vs 1/T.
 - *Amplitudes*: from asymmetric DIPSHIFT intensity decays

Effects of Motion on NMR Spectra

Fast motion: $k >> |\omega_A - \omega_B|$ Average frequencies $\overline{\omega}$

Intermediate motion: $k \approx |\omega_A - \omega_B|$

Slow motion: $k \ll |\omega_A - \omega_B|$ Measured during a mixing time.

Fast Motion: Averaging of NMR Frequencies

For a nuclear spin interaction tensor $\boldsymbol{\sigma}$:

$$\omega(\theta,\phi) = \frac{1}{2}\delta \left(3\cos^2\theta - 1 - \eta\sin^2\theta\cos 2\phi\right)$$

Reorientation among N sites with probability p_j yields an average tensor:

$$\overline{\omega} = \sum_{j} p_{j} \omega_{j}$$
 average tensor $\Sigma = \sum_{j} p_{j} \sigma_{j}$

- Σ has 3 principal axes (Σ_1 , Σ_2 , Σ_3).
- Σ is characterized by $\overline{\delta}$, $\overline{\eta}$, which reflect the geometry of motion.
- The orientation of B_0 in the Σ frame: (θ_a, ϕ_a) .

$$\overline{\omega}(\theta_a, \phi_a) = \overline{\delta} \frac{1}{2} (3\cos^2 \theta_a - 1 - \overline{\eta}\sin^2 \theta_a \cos 2\phi_a)$$

 $\sum_{\Sigma_{2}}^{B_{0}} Z_{B} \text{ (final)}$ $\sum_{\Sigma_{3}}^{\Sigma_{1}} Z_{A} \text{ (initial)}$

Once the average tensor is known, we can predict the motionally averaged spectrum.

- In general, $\overline{\delta} \neq \delta$, $\overline{\eta} \neq \eta$.
- For dipolar couplings, $\overline{\delta}$ can be sign sensitive, and $\overline{\eta} \neq 0$.

How do we determine $\overline{\delta}$ and $\overline{\eta}$?

Averaged Anisotropy & Asymmetry for Some Motional Geometries

• Isotropic motion
$$\implies \overline{\delta} = 0$$

• Uniaxial rotation
• N
$$\ge$$
 3 C_N jumps $\Big\} \Longrightarrow \overline{\eta} = 0$

- For uniaxial rotation and N \ge 3 C_N jumps, the z-axis of the average tensor is the symmetry axis, z_D.
- The principal values δ_{ii} are the frequencies when B_0 is parallel to the principal axes.
- $\overline{\delta}$ is the frequency when B₀ is parallel to the z-axis of the Σ tensor.
- Under this condition, motion does not change the PAS orientation relative to B_0 , so the frequency depends on the fixed angles (θ_{PD} , φ_{PD}):

$$\overline{\delta} = \omega(\theta_{PD}, \phi_{PD}) = \frac{1}{2}\delta(3\cos^2\theta_{PD} - 1 - \eta\sin^2\theta_{PD}\cos 2\phi_{PD})$$

11

Average Tensor for Two-Site Jumps

2-site jumps averaging a uniaxial ($\eta = 0$) interaction: calculate the frequency when B₀ is parallel to the 3 principal axes of the Σ tensor.

The Σ tensor is invariant under A-B switching: $\Sigma = (\sigma_A + \sigma_B)/2 = (\sigma_B + \sigma_A)/2$

By symmetry, the 3 principal axes should be:

- Σ_1 : Bisector of the AOB angle
- Σ_2 : Normal to the bisector in the AOB plane
- Σ_3 : Normal to the AOB plane

	σ_{A}	σ_{B}
Σ_1 axis:	β/ 2 ,	β/ 2
Σ_2 axis:	90°+β/2,	90°-β/2
Σ_3 axis:	90°,	90°

• 1, 2, 3 convention: left to right, i.e. $\overline{\omega}_1 > \overline{\omega}_2 > \overline{\omega}_3$

• β < 90° and β > 90° switch $\Sigma_1 \& \Sigma_2$ axes.

The principal values of the average tensor:

$$\overline{\omega}_n = \frac{1}{2}\delta(3\cos^2\Theta_n - 1)$$

 Θ_n : angle between z_{PAS} and Σ_n

Two-Site Jumps: Phenylene Ring Flip

²H quadrupolar spectra or C-H dipolar spectra (η = 0): Reorientation angle β_R = 120°.

$$\left(\overline{\omega}_n = \frac{1}{2}\delta\left(3\cos^2\Theta_n - 1\right)\right)$$

mobile

$$\begin{cases} \Theta_1 = 30^{\circ} \\ \Theta_2 = 60^{\circ} \\ \Theta_3 = 90^{\circ} \end{cases} \begin{cases} \overline{\omega}_1 = \frac{5}{8}\delta \\ \overline{\omega}_2 = -\frac{1}{8}\delta \\ \overline{\omega}_3 = -\frac{1}{2}\delta \end{cases} \Rightarrow \begin{cases} \overline{\delta} = \frac{5}{8}\delta \\ \overline{\eta} = 0.6 \end{cases}$$

 $\overline{\eta} \neq 0$ for the average dipolar tensor.

δ

Two-Site Jumps: trans-gauche Isomerization

$$\overline{\omega}_n = \frac{1}{2}\delta(3\cos^2\Theta_n - 1)$$

Two-Site Jumps: Histidine Ring Flip

180° jump around the C β -C γ bond:

For the Cy-N\delta1 bond: $\beta_R = 2 \cdot 57^\circ = 114^\circ$ $\begin{aligned}
\overline{\omega}_n &= \frac{1}{2} \delta \left(3\cos^2 \Theta_n - 1 \right) \\
\delta_2 &= 57^\circ \Rightarrow \begin{cases}
\overline{\omega}_1 &= 0.56\delta \\
\overline{\omega}_2 &= -0.06\delta \\
\overline{\omega}_3 &= -0.5\delta
\end{cases} \Rightarrow \begin{cases}
\overline{\delta} &= 0.56\delta \\
\overline{\eta} &= 0.79 \\
\overline{\eta} &= 0.79
\end{aligned}$

For the C δ 2-H δ 2 bond: $\beta_R = 156^\circ \Rightarrow \overline{\delta} = 0.94\delta \Rightarrow S_{C\delta 2 - H\delta 2} = 0.94$

Multi-Site Jump: Gaussian Axial Fluctuation

- For motions involving *multiple sites*, the sum tensor is the weighted average of individual tensors: $\overline{\omega} = \sum_{i} p_{j} \omega_{j} \rightarrow \Sigma = \sum_{i} p_{j} \sigma_{j}$
- The sum tensor can be diagonalized to give $\bar{\delta}$ and $\bar{\eta}$.

Example

- Motion of a Trp sidechain in influenza M2.
- The measured order parameters rule out a simple 2-site jump motion around a single axis.
- Use a *Gaussian biaxial fluctuation model* with widths $\sigma_{\alpha\beta}$ and $\sigma_{\beta\gamma}$ to calculate the average couplings.

Motion of Trp41 in the M2 Proton Channel

σ_{αβ}≈ 30° σ_{βγ}≈ 15°

Uniaxial Rotation of a Rigid Molecule

3-fold axis

Relative to Z_M :

Amantadine is rigid, and all bonds lie on a *diamond lattice* with *tetrahedral angles* relative to the molecular axis, Z_M .

• 12 CD bonds :
$$\theta_{PM} = 70.5^{\circ}$$
, 109.5°

• 3 CD bonds :
$$\theta_{PM} = 0^{\circ}$$

 If amantadine rotates only around the molecular axis, then the average ²H quadrupolar coupling is:

$$\overline{\delta} = \frac{1}{2} \delta \left(3 \cos^2 \theta_{PM} - 1 \right)$$

- 12 CD bonds: $0.33 \cdot \delta = 40 \ kHz$
- 3 CD bonds : $1.0 \cdot \delta = 125 \ kHz$

Cady et al, *Nature*, 2010.

 If amantadine also rotates around an external axis, the bilayer normal Z_D:

$$\overline{\overline{\delta}} = \frac{1}{2} \delta \left(3\cos^2 \theta_{PM} - 1 \right) \cdot \frac{1}{2} \left(3\cos^2 \theta_{MD} - 1 \right)$$
$$= \frac{1}{2} \delta \left(3\cos^2 \theta_{PM} - 1 \right) \cdot S_{mol}$$

Amantadine Dynamics in Lipid Bilayers

- 12 CD bonds: $0.33 \cdot \delta = 40 \ kHz$
- 3 CD bonds : $1.0 \cdot \delta = 125 \ kHz$

Gel phase:
$$S_{mol} \approx 1 \implies \theta_{MD} = 0^{\circ}$$

Liquid-crystalline phase: $S_{mol} = \pm 0.46 \implies \theta_{MD} = 37^{\circ}, 80^{\circ}$

In the lipid bilayer

SSNMR Studies of Molecular Motion

- > Timescales & amplitudes of motion from NMR
- Fast motion: average (sum) tensors
- > Experiments for measuring fast motion
- Slow motion: difference tensors
- > Experiments for measuring slow motion

The X-¹H DIPSHIFT Experiment

- Allows higher v_r to be used to measure small couplings.
- Constant time removes ${}^{1}HT_{2}$ decay during t_{1} .

Munowitz et al, *J. Am. Chem. Soc.*, 103, 2529 (1981); Hong et al, **J. Magn. Reson.** 129, 85 (1997).

Simulated C-H & N-H DIPSHIFT Time Signals

FSLG for ¹H homonuclear decoupling (k = 0.577)

23

Python Code for Simulating DIPSHIFT Curves http://meihonglab.com/

HONG LAB RESEARCH PUBLICATIONS LAB PEOPLE MEIHONG SOFTWARE CONTACT SOFTWARE: FITTING PROGRAMS FOR DIPOLAR-CHEMICAL SHIFT CORRELATION (DIPSHIFT) EXPERIMENT

Install Anaconda Navigator or Jupyter

Polysaccharide Dynamics in Plant Cell Walls

Wild type *Arabidopsis* low-methyl-ester mutant

Homogalacturonan (1-4) α-D-GalA

Pectin Tethering of Cellulose Slows Cell Wall Loosening

Wild type Arabidopsis

Methyl-ester mutant

2D Lee-Goldberg CP for Measuring ¹³C-¹H Dipolar Couplings

- \odot Simple: increment CP contact time as t₁.
- \odot ¹H-¹H dipolar coupling is removed by LG spin lock.
- ☺ Can be done under fast MAS (10 40 kHz)
- © Frequency-domain dipolar spectrum resolves multiple splittings.
- \bigcirc Scaling factor: $k = \cos(54.7^{\circ}) = 0.577$.
- ⊗ CP matching may be unstable under fast MAS.

Van Rossum et al *JACS*, 122, 3465 (2000). Hong et al *JPC*, 106, 7355 (2002).

LG-CP Time Signals

Hartman-Hahn CP does not show distinct dipolar oscillations due to the presence of multi-spin ¹H-¹H dipolar couplings under slow MAS.

Van Rossum et al *JACS*, 122, 3465 (2000). Hong et al *JPC*, 106, 7355 (2002).

Cholesterol Dynamics in Lipid Membranes

LG-CP Average Hamiltonian Analysis

Transform into a tilted frame and the interaction frame of the rf pulses, under the sideband matching condition

$$\omega_{eff,H} - \omega_{1S} = \pm \omega_r$$

It can be shown that the average I-S dipolar coupling is the scalar product between a ZQ spin operator and a tilted effective field: $I_{-}^{(23)}$

$$\overline{\tilde{H}_{IS}^{T}}^{(0)} = \frac{1}{2} \underbrace{\delta \sin \theta_m C_1}_{\omega_{IS,LG}} \cdot \underbrace{\left(I_x^{(23)}, I_y^{(23)}, I_z^{(23)}\right)}_{\overline{I^{(23)}}} \underbrace{\left(\cos \gamma \atop \sin \gamma \atop 0\right)}_{B_{IS,LG}} \xrightarrow{\left(\sum \gamma \atop 1, \sum s \atop 1, s$$

DD

り

SSNMR Studies of Molecular Motion

- > Timescales & amplitudes of motion from NMR
- > Fast motion: average tensors
- > Experiments for measuring fast motion
- Slow motion: difference tensors
- > Experiments for measuring slow motion

Slow Motion: 2D Exchange NMR

Schmidt-Rohr and Spiess, *Multidimensional Solid-State NMR and Polymers*, 1994.

1D Stimulated Echo: Time-Domain Exchange

- 1D analog of 2D exchange spectra.
- \bullet Allows rapid measurement of τ_c without 2D.

2D time signal:

$$f(t_1,t_2) = \left\langle \left[\cos\omega(\theta_1)t_1 - i\sin\omega(\theta_1)t_1\right] \cdot e^{i\omega(\theta_2)t_2} \right\rangle = \left\langle e^{-i\omega(\theta_1)t_1} \cdot e^{i\omega(\theta_2)t_2} \right\rangle$$

powder averaging

1D time signal: $t_2 = t_1 = t_e$.

• Segments without frequency change: $\omega(\theta_1) = \omega(\theta_2) = \omega(\text{diagonal})$.

$$M(t_e) = \left\langle e^{-i\omega t_e} \cdot e^{i\omega t_e} \right\rangle = \underbrace{\langle \mathbf{1} \rangle}_{2 \text{ scans}}$$

Segments with frequency change:

$$M(t_e) = \left\langle e^{-i\omega(\theta_1)t_e} \cdot e^{i\omega(\theta_2)t_e} \right\rangle = \left\langle e^{i\omega[(\theta_2)-\omega(\theta_1)]t_e} \right\rangle \underset{\text{long } t_m}{\longrightarrow} 0$$

1D stimulated echo intensity = 2D diagonal intensity

1D Stimulated Echo Under MAS: CODEX

- 180° pulse train recouples X-spin CSA.
- 90° storage and read-out pulses are phase-cycled together.
- After the 2nd recoupling period, the MAS phase for 2 scans is:

$$\cos \Phi_{1} \cos \Phi_{2} - \sin \Phi_{1} \sin \Phi_{2} = \cos \left(\Phi_{1} + \Phi_{2} \right) = \cos \left(\left| \Phi_{2} \right| - \left| \Phi_{1} \right| \right)$$

$$\Phi_{1} = \frac{N}{2} \left(\int_{0}^{t_{r}/2} \omega_{1}(t) dt - \int_{t_{r}/2}^{t_{r}} \omega_{1}(t) dt \right) = N \int_{0}^{t_{r}/2} \omega_{1}(t) dt$$

$$\Phi_{2} = \frac{N}{2} \left(-\int_{0}^{t_{r}/2} \omega_{2}(t) dt + \int_{t_{r}/2}^{t_{r}} \omega_{2}(t) dt \right) = -N \int_{0}^{t_{r}/2} \omega_{2}(t) dt$$

- No motion: $\omega_1 = \omega_2$, $\rightarrow \cos(\Phi_1 + \Phi_2) = 1$, full echo.
- With motion: $\omega_1 \neq \omega_2$, $\rightarrow \cos(\Phi_1 + \Phi_2) < 1$, reduced echo.

deAzevedo...Schmidt-Rohr, J. Chem. Phys., 112, 8988 (2000).

Exchange NMR Involves Difference Tensor

CODEX signal:

$$\frac{S(t_m, \delta N t_r)}{S_0(t_m, \delta N t_r)} = \cos(|\Phi_2| - |\Phi_1|) = \cos(\Phi^{\Delta}), \text{ where } \Phi^{\Delta} = N \int_2^{t_r/2} \omega^{\Delta}(t) dt$$

Difference tensor: $\Delta \equiv \sigma_A - \sigma_B$

Reflection of the Z_A and Z_B axes with the bisector plane gives the opposite of the original difference tensor.

For $\eta = 0$, the Δ tensor's principal axis directions are:

- Δ_2 : Normal of the AOB plane;
- Δ_3 and Δ_1 : in the AOB plane, 45° from the bisector.

$$σ_A$$
 $σ_B$ $Δ_1$ axis: $45°-β/2$, $45°+β/2$ $Δ_2$ axis: $90°$, $90°$ $Δ_3$ axis: $45°+β/2$, $45°-β/2$

$$\omega_n^{\Delta} = \frac{1}{2} \delta \left(3\cos^2 \Theta_{A,n} - 1 \right) - \frac{1}{2} \delta \left(3\cos^2 \Theta_{B,n} - 1 \right)$$

CODEX is Sensitive to Small-Angle Reorientations

For
$$Z_A$$
:
 $\omega_{A,2} = \frac{1}{2}\delta(3\cos^2 90^\circ - 1) = -\frac{1}{2}\delta$
 $\omega_{B,2} = \frac{1}{2}\delta(3\cos^2 90^\circ - 1) = -\frac{1}{2}\delta$
 $\omega_{B,1} = \frac{1}{2}\delta(3\cos^2(45^\circ - \beta/2) - 1)$
 $\omega_{B,3} = \frac{1}{2}\delta(3\cos^2(45^\circ - \beta/2) - 1)$
 $\omega_{B,3} = \frac{1}{2}\delta(3\cos^2(45^\circ - \beta/2) - 1)$

- CODEX signal scales ~ $sin\beta$, which is ~ β for small angles.
- Usual angular dependence is $(3\cos^2\beta 1)/2$, which scales $\sim \beta^2$.

Schmidt-Rohr et al, *Encyclop NMR*, 9, 633 (2002).

Summary

Motions are ubiquitous in biological molecules.

- Fast motions average the interaction tensors and narrow the spectra.
- The *average tensors* and spectral lineshapes of several common motions can be analytically derived.
- Fast motions can be measured using 2D SLF experiments that resolve dipolar couplings by chemical shifts.
- Order parameters & order tensors give information on rigid-body motions as well as internal motions.
- Slow motions can be measured as 2D exchange cross peaks or 1D CODEX stimulated echo intensities.
- The geometry of slow motion is described by *difference tensors*.

Hydration of Biomolecular Systems

Water in Amyloid Fibrils

Wild-type $A\beta 40$

(E22 Δ) Osaka A β 40

Transthyretin TTR(105-115)

Paravastu et al, **PNAS**, 2008.

Schultz et al, *Angew. Chemie,* 2015.

Fitzpatrick et al, **PNAS**, 2013.

Water-Edited 2D Solid-State NMR Experiments

Water-edited 2D NC α

¹H T₁ Saturation-Recovery 2D hNH

Water-Edited 2D hNH

Structure and Dynamics of Tau Fibrils

Water-Edited 2D CC Spectra of Tau

Water-Edited 2D NC Spectra of Tau

Water-edited 2D NC α

Dregni, Duan, and Hong, *Biochemistry*, 2020.

Hydrated versus Dry Residues in Tau Fibrils

Pu Duan

Hydration of a Membrane Ion Channel

Mandala, McKay, Shcherbakov, Dregni, Kolocouris & Hong, Nat. Struc. Mol. Biol, 2020.

¹H-Detected Water-Edited 2D NMR Experiments

Water-Edited 2D hNH

¹H T₁ Saturation-Recovery 2D hNH

EmrE: A Proton-Coupled Multidrug-Resistance Transporter

Hydration of the Substrate Binding Pocket of EmrE

Shcherbakov, Spreacker, Dregni, Henzler-Wildman & Hong, Nature Commun. 2022.

MD Simulations of Water in Influenza M2 Channels

Water in BM2 Channels: More Water @ Low pH

Water in the BM2 Channel is Anisotropic

Most probable water orientations

Rigid-limit water ¹H CSA: 28 ppm

