Distance Measurements in Magic-Angle Spinning Solid-State NMR

Prof. Mei Hong Department of Chemistry Massachusetts Institute of Technology

Pre-ISMAR NMR Workshop, Moreton Bay Research Station, North Stradbroke Island, Univ. Queensland, Brisbane, Australia, August 18-20, 2023

Outline

- Homonuclear distances from 2D isotropic spin exchange
- Homonuclear distances from anisotropic spin exchange (CODEX)
- Heteronuclear distances from REDOR
- These techniques are illustrated using the ¹⁹F spin
- Examples of applications to membrane proteins and amyloid proteins

Distance Measurements in Solid-State NMR

19**F**

- ✓ Is 100% abundant
- ✓ Has no background in biomolecules
- ✓ Can be readily incorporated
- ✓ Has large chemical shifts
- ✓ Is a good distance probe, γ_F = 94% γ_H

Fluorines in Chemistry and Biology

~30% of medicinal compounds contain ¹⁹F

Synthetic peptides:

Site-specific fluorination

Recombinant proteins:

glyphosate

Homonuclear 2D ¹⁹F-¹⁹F Spin Exchange for Chemically Inequivalent Spins (Isotropic Spin Exchange)

Spectrally Resolved ¹⁹F Spin Exchange

Roos, Wang, Shcherbakov, and Hong, J. Phys. Chem, 122, 2900 (2018).

Spectrally Resolved ¹⁹F Spin Exchange

Distances: 2.7 - 9.6 Å**Buildup** τ_{SD} : 6.7 – 40 ms

Roos, Wang, Shcherbakov, and Hong, J. Phys. Chem, 122, 2900 (2018).

¹⁹F-¹⁹F Polarization Transfer in Proteins

Roos, Wang, Shcherbakov, and Hong, *J. Phys. Chem*, 122, 2900 (2018).

DARR/CORD is More Efficient Than PDSD

Roos, Wang, Shcherbakov, and Hong, *J. Phys. Chem*, 122, 2900 (2018).

From Buildup Rates to Distances: Master Curves

 $k_{SD} \approx 0.5\pi F(0)\omega^2$ where $F(0) \approx f_0 / \Delta \delta_{iso}^2$ $\implies k_{SD} \approx \frac{c}{\Delta \delta_{iso}^2} \frac{1}{r^6} \implies \log(k_{SD}\Delta \delta_{iso}^2) = \log c - 6\log r$

*CF*₃ groups: highly efficient polarization transfer.

Faster MAS: ¹⁹F-¹⁹F Dipolar Recoupling by RFDR

¹⁹F RFDR: formyl-MLF

¹⁹F CSA Tensor Orientation & Relayed Transfer

Finite Pulse Lengths & CSA Orientation

Finite-Pulse RFDR at Fast MAS is More Efficient Than δ -Pulse RFDR at Slow MAS

Homonuclear 2D ¹⁹F-¹⁹F Spin Exchange for Chemically Equivalent Spins (Anisotropic Spin Exchange)

Anisotropic ¹⁹F Spin Exchange: CODEX

deAzevedo... Schmidt-Rohr, *J. Am. Chem. Soc*, 121, 8411 (1999).

 Equilibrium echo intensity is 1/N for an oligomeric number of N;

$$\overrightarrow{\mathsf{M}(\mathsf{t})} = e^{-\mathsf{K}\mathsf{t}} \overrightarrow{\mathsf{M}(\mathsf{0})}$$

$$= \begin{pmatrix} k_{\mathsf{A}\mathsf{B}} + k_{\mathsf{A}\mathsf{C}} & -k_{\mathsf{B}\mathsf{A}} & -k_{\mathsf{C}\mathsf{A}} \\ -k_{\mathsf{A}\mathsf{B}} & k_{\mathsf{B}\mathsf{A}} + k_{\mathsf{B}\mathsf{C}} & -k_{\mathsf{C}\mathsf{B}} \\ -k_{\mathsf{A}\mathsf{C}} & -k_{\mathsf{B}\mathsf{C}} & k_{\mathsf{C}\mathsf{A}} + k_{\mathsf{C}\mathsf{B}} \end{pmatrix}$$

$$\boxed{\mathsf{k}_{ij} = 0.5\pi \, \omega_{ij}^2 \,\mathsf{F}(\mathsf{0})}$$

Luo and Hong, J. Am. Chem. Soc. 128, 7242 (2006).

¹⁹F CODEX of SARS ETM in Lipid Bilayers

ERGIC membrane: POPC, POPE, POPS, PI, Chol

Roos, Wang, Shcherbakov, and Hong, *J. Phys. Chem*, 122, 2900 (2018).

Bruker HFX Probe

[•] One RF input for ¹H & ¹⁹F channels;

 Isolation between ¹H and ¹⁹F channels achieved by connecting tuning components at different locations on the λ/4 transmission line.

Bruker HFX Probe Design

Converting a 1.3 mm HCN Probe to an FCN Probe

Part 2

Heteronuclear X-¹⁹F Distance Experiments by REDOR

Rotational Echo Double Resonance (REDOR)

- Rotor synchronized spin-echo on ¹³C channel <u>refocuses ¹³C</u> isotropic chemical shift and CSA evolution
- <u>Recoupled ¹⁵N CSA commutes with ¹³C-¹⁵N DD coupling</u>!
- 2nd group of pulses shifted by $-\tau_r/2$ relative to 1st group to change sign of H_D and avoid refocusing the ¹³C-¹⁵N dipolar coupling
- *xy*-type phase cycling of ¹⁵N pulses is critical (**Gullion, JMR 1990**)

REDOR Universal Curve: Example

- Experiment highly robust toward ¹⁵N CSA, experimental imperfections, resonance offset and finite pulse effects (xy-4/xy-8 phase cycling is critical for this)
- REDOR is used routinely to measure distances up to ~5-6 Å (D ~ 20 Hz) in isolated ¹³C-¹⁵N spin pairs

2D ¹³C-¹⁹F and ¹H-¹⁹F REDOR Experiments

Shcherbakov et al, JPC, 2019

2D CC Resolved ¹H-¹⁹F REDOR 180° 55° 55 1H FSLG FSLG TPPM CP TPPM CORD 90 13C CP 19F rotor 7 8 0 2 3 5 6 1 period

Duan et al, *JACS*, 2022

Multiplexing: 2D-Resolved ¹³C-¹⁹F Distances

Fast MAS (40-50 kHz) retrieves near-universal REDOR dephasing.

2D-Resolved ¹³C-¹⁹F REDOR Spectra

600 MHz, 25 kHz MAS, 8.4 ms mixing

Alex Shcherbakov

Shcherbakov and Hong, J. Biomol. NMR, 71, 31 (2018).

¹³C-¹⁹F Distances: 3F-Tyr GB1

Shcherbakov and Hong, J. Biomol. NMR, 71, 31 (2018).

Shcherbakov and Hong, J. Biomol. NMR, 71, 31 (2018).

¹⁹F Chemical Shift Anisotropy: Residual Motion

(δ_{iso}, δ_{CSA}, η) 3F-Y45: (-132.8 ppm, -75 ppm, 0.4) 3F-Y3: (-133.1 ppm, -76 ppm, 0.4) 3F-Y33: (-135.8 ppm, -58 ppm, 0.4)

Experimental
 Best-fit simulation

5F-W43: (-123.1 ppm, +46.6 ppm, 0.5)

2D hNH Resolved ¹H-¹⁹F REDOR

- Requires ¹³C, ¹⁵N, ²H-labeled protein, back exchange to obtain H^N
- ¹⁹F either recombinantly incorporated into the protein or provided by a ligand

Rapid Measurement of ¹H-¹⁹F Distances

Distance Precision and Accuracy

REDOR dephasing at fast MAS is independent of ¹⁹F CSA tensor orientation.

Shcherbakov et al. J. Phys. Chem. 123, 4387 (2019).

¹⁹F-Enhanced ssNMR for Structure Determination

SARS-CoV-2 envelope protein

Multidrug-resistance transporter EmrE

Low pH

PET tracer binding to $A\beta$

ETM is Well Ordered in Lipid Bilayers

ERGIC membrane:

Venkata Shiva Mandala, Matt McKay

Interhelical Distances From ¹³C-¹⁹F REDOR

38

Pore-Facing versus Lipid-Facing Residues

Mandala, McKay, Shcherbakov, Dregni, Kolocouris & Hong, Nat. Struc. Mol. Biol, 2020.

Structure of the Closed ETM in Lipid Bilayers

Shiva Mandala

Mandala, McKay, Shcherbakov, Dregni, Kolocouris & Hong, Nat. Struc. Mol. Biol, 2020.

EmrE: a Bacterial Transporter

Couples proton transport with drug export to cause multidrug resistance

Backbone Crystal Structure & Sidechain MD

3.8 Å crystal structure of the backbone

MD simulations of the active site

Ribbons: MD

TM4 TM4 TM2 TM3

Chen...Chang, *PNAS*, 2007.

Ovchinnikov...Karplus, PNAS, 2018.

¹⁹F NMR Spectra of the Substrate

Protein-Substrate H^N-F Distances

- CDN-labeled S64V-EmrE (Grant Hisao, Katie Henzler-Wildman)
- DMPC bilayers, pH 5.8
- 38 kHz MAS

Shcherbakov, Hisao ... Henzler-Wildman, Hong, *Nature Comm.*, 2021.

TPP is Near TM1 and TM3 Helices

Substrate-Bound Structure of EmrE at Acidic pH

•

•

•

•

Substrate-Bound Structure of EmrE at Acidic pH

- TPP⁺ binds the two subunits asymmetrically
- Multivalent aromatic interactions
- Spacious binding site allows tetrahedral jumps

Shcherbakov, Hisao ... Henzler-Wildman, Hong, *Nature Comm.*, 2021.

Fluorinated PET Tracers for Amyloid Imaging

Flutemetamol

Duan et al. J. Am. Chem. Soc., 2022.

¹H-¹⁹F REDOR Without Deuteration

Duan et al. J. Am. Chem. Soc., 2022.

Flutemetamol Bind Doublet Motifs in Aβ: Polymorph Independence

3 binding sites in Aβ fibrils: ¹²VHH¹⁴, ¹⁸VFF²⁰, ³⁹VV⁴⁰

Pu Duan Duan et al. J. Am. Chem. Soc., 2022.

Ligand Position Along the Fibril Axis

Duan et al. J. Am. Chem. Soc., 2022.

Conclusions

- Homonuclear and heteronuclear distances can be readily measured in solid-state NMR.
- Homonuclear distances between chemical-shift resolved spins are most easily measured by 2D spin diffusion or dipolar recoupling experiments. Cross-peak intensity buildup can be semi-quantitatively fit to obtain distances.
- Homonuclear distances between spins with the same isotropic chemical shift but different anisotropic chemical shifts can be measured using the CODEX technique and exchange matrix analysis.
- Heteronuclear distances can be measured using dipolar recoupling experiments. The simplest and most robust heteronuclear dipolar recoupling technique is REDOR.
- REDOR can be incorporated into 2D correlation experiments to measure many distances in a single pair of 2D experiments.
- ¹⁹F allows distances to be measured to longer range than ¹³C and ¹⁵N.

Acknowledgement

Hong group @ MIT

Alex Shcherbakov Dr. Matthias Roos Dr. Pu Duan Dr. Joao Medeiros-Silva Venkata Shiva Mandala Noah Somberg Dr. Aurelio Dregni Dr. Matt McKay

Shiva

Wisconsin Madison: Katie Henzler-Wildman Wichita State Univ. Haifan Wu

Collaborators

Funding: NIH

Postdoc positions available.

